首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present in vitro and in vivo experiments were undertaken to clarify the genotoxic potential of the hydroxyanthrachinone aloeemodin which can be found in different plant derived products for therapy of constipation. The results demonstrate that aloeemodin is able to induce mutagenic effects in vitro. Positive results were obtained in the chromosomal aberration assay with CHO cells, as well as in the Salmonella reverse mutation assay (frameshift mutations in strains TA 1537, TA 1538 and TA 98). No mutagenic potential of aloeemodin, however, was observed in the gene mutation assay with mammalian cells in vitro (HPRT assay in V79 cells). Each assay was performed in the presence and absence of an extrinsic metabolic activation system (S9-mix). In in vivo studies (micronucleus assay in bone marrow cells of NMRI mice; chromosome aberration assay in bone marrow cells of Wistar rats; mouse spot test [DBA/2J × NMRI]) no indication of a mutagenic activity of aloeemodin was found. Information about a possible reaction of aloeemodin with DNA was derived from an in vivo UDS assay. Hepatocytes of aloeemodin-treated male Wistar rats did not show DNA damage via repair synthesis. All these data suggest that aloeemodin is able to interact with DNA under certain in vitro conditions. However, in vivo the results that were negative did not indicate a genotoxic potential. Therefore, it may be assumed that a genotoxic risk for man might be unlikely.  相似文献   

2.
During the last three decades there was an increasing interest for developing biomarkers of oxidative stress. Therefore, efforts have been made to develop sensitive methods aimed at measuring cellular levels of oxidatively generated DNA lesions. Initially, most attention had focused on 8-oxo-7,8-dihydro-2'- deoxyguanosine (8-oxodGuo) probably because reliable analytical methods (mostly HPLC coupled to electrochemical detection) were available since mid-eighties to detect that lesion at the cellular level. With the recent development of more versatile analytical (using mass spectrometric detection) and biochemical assays (such as the comet assay) efforts are currently made to measure simultaneously several DNA lesions. The main degradation pathways of the four main pyrimidine (thymine, cytosine) and purine (adenine, guanine) bases mediated by hydroxyl radical (?OH), one-electron oxidants and singlet oxygen (1O2) have been also studied in detail and results indicate that other DNA modification than 8-oxodGuo could represent suitable biomarkers of oxidative stress. In this review article, the main oxidative degradation products of DNA will be presented together with their mechanisms of formation. Then the developed methods aimed at measuring cellular levels of oxidatively generated DNA lesions will be critically reviewed based on their specificity, versatility and sensitivity. Illustration of the powerfulness of the described methods will be demonstrated using quantification of DNA lesions in cells exposed to ionizing radiations. In addition, recent work highlighting the possible formation of complex DNA lesions will be reported and commented regarding the possibility of using such complex damage as potential biomarkers of oxidative stress.  相似文献   

3.
Genotoxicity testing of fluconazole in vivo and in vitro   总被引:1,自引:0,他引:1  
The genotoxic effects of the antifungal drug fluconazole (trade name triflucan) were assessed in the chromosome aberration (CA) test in mouse bone-marrow cells in vivo and in the chromosome aberration, sister chromatid exchange (SCE) and micronucleus (MN) tests in human lymphocytes. Fluconazole was used at concentrations of 12.5, 25.0 and 50.0 mg/kg for the in vivo assay and 12.5, 25.0 and 50.0 microg/ml were used for the in vitro assay. In both test systems, a negative and a positive control (MMC) were also included. Six types of structural aberration were observed: chromatid and chromosome breaks, sister chromatid union, chromatid exchange, fragments and dicentric chromosomes. Polyploidy was observed in both the in vivo and in vitro systems. In the in vivo test, fluconazole did not significantly increase the frequency of CA. In the in vitro assays, CA, SCE and MN frequencies were significantly increased in a dose-dependent manner compared with the negative control. The mitotic, replication and cytokinesis-block proliferation indices (CBPI) were not affected by treatments with fluconazole. According to these results, fluconazole is clastogenic and aneugenic in human lymphocytes, but these effects could not be observed in mice. Further studies should be conducted in other test systems to evaluate the full genotoxic potential of fluconazole.  相似文献   

4.
Oxidative stress converts lipids into DNA-damaging agents. The genomic lesions formed include 1,N(6)-ethenoadenine (epsilonA) and 3,N(4)-ethenocytosine (epsilonC), in which two carbons of the lipid alkyl chain form an exocyclic adduct with a DNA base. Here we show that the newly characterized enzyme AlkB repairs epsilonA and epsilonC. The potent toxicity and mutagenicity of epsilonA in Escherichia coli lacking AlkB was reversed in AlkB(+) cells; AlkB also mitigated the effects of epsilonC. In vitro, AlkB cleaved the lipid-derived alkyl chain from DNA, causing epsilonA and epsilonC to revert to adenine and cytosine, respectively. Biochemically, epsilonA is epoxidized at the etheno bond. The epoxide is putatively hydrolyzed to a glycol, and the glycol moiety is released as glyoxal. These reactions show a previously unrecognized chemical versatility of AlkB. In mammals, the corresponding AlkB homologs may defend against aging, cancer and oxidative stress.  相似文献   

5.
6.
The alkaline single cell gel electrophoresis (comet) assay was applied to study genotoxic properties of two inhalation anesthetics-halothane and isoflurane-in human peripheral blood lymphocytes (PBL). The cells were exposed in vitro to either halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) or isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether) at concentrations 0.1-10 mM in DMSO. The anesthetics-induced DNA strand breaks as well as alkali-labile sites were measured as total comet length (i.e., increase of a DNA migration). Both analysed drugs were capable of increasing DNA migration in a dose-dependent manner. In experiments conducted at two different electrophoretic conditions (0. 56 and 0.78 V/cm), halothane was able to increase DNA migration to a higher extent than isoflurane. The comet assay detects DNA strand breaks induced directly by genotoxic agents as well as DNA degradation due to cell death. For this reason a contribution of toxicity in the observed effects was examined. We tested whether the exposed PBL were able to repair halothane- and isoflurane-induced DNA damage. The treated cells were incubated in a drug-free medium at 37 degrees C for 120 min to allow processing of the induced DNA damage. PBL exposed to isoflurane at 1 mM were able to complete repair within 60 min whereas for halothane a similar result was obtained at a concentration lower by one order of magnitude: the cells exposed to halothane at 1 mM removed the damage within 120 min only partly. We conclude that the increase of DNA migration induced in PBL by isoflurane at 1 mM and by halothane at 0.1 mM was not a result of cell death-associated DNA degradation but was caused by genotoxic action of the drugs. The DNA damage detected after the exposure to halothane at 1 mM was in part a result of DNA fragmentation due to cell death.  相似文献   

7.
8.
Selenium monosulfide (Ses) was reported to be carcinogenic to livers of male and female rats and livers and lungs of female mice. However, its genotoxicity profile in short-term assays is somewhat equivocal. A multiple endpoint/multiple tissue approach to short-term genetic toxicity testing has been developed in our laboratory. In the present paper, the effect of SeS in in vivo and in vivo/ in vitro micronucleus and chromosome aberration assays in rat bone marrow and spleen are reported. In the in vivo assay, small but statistically significant increases in bone marrow micronucleated polychromatic erythrocytes (MNPCEs) were observed 24 h after treatment of rats with 50 mg/kg SeS and 48 h after treatment with 12.5 mg/kg. A significant decrease in the PCE/total erythrocyte (TE) ratio, indicative of cytotoxicity, was observed at the 50 mg/kg dose at the 24-h timepoint. In spleen, no increases in MNPCEs or decreases in the PCE/TE ratios were observed. No evidence of a significant increase in aberrations was observed in bone marrow or spleen. In the in vivo/in vitro assay, no increase in micronucleated binucleated cells or cells with aberrations was observed in SeS-treated rats. The small but statistically significant increases in MN observed in the in vivo study are considered likely not to be biologically significant since no dose-response was observed and all the values obtained were within historical control range in our laboratory. Given the overall genetic toxicity profile of SeS, it appears that SeS may be a weak mutagen and that differences between testing protocols may be very important in determining whether or not it is found to be negative or positive. Histological evidence was obtained in this study that suggests that the liver is the acute target organ of SeS in rats. Given the fact that SeS is selectively hepatocarcinogenic, we are currently testing the hypothesis that the genotoxicity of SeS in rats may be more readily detectable in liver than in bone marrow or spleen.  相似文献   

9.
The therapeutic effect of the thiopurines, 6-thioguanine (6-TG), 6-mercaptopurine, and its prodrug azathioprine, depends on the incorporation of 6-TG into cellular DNA. Unlike normal DNA bases, 6-TG absorbs UVA radiation, and UVA-mediated photochemical damage of DNA 6-TG has potentially harmful side effects. When free 6-TG is UVA irradiated in solution in the presence of molecular oxygen, reactive oxygen species are generated and 6-TG is oxidized to guanine-6-sulfonate (G(SO3)) and guanine-6-thioguanine in reactions involving singlet oxygen. This conversion is prevented by antioxidants, including the dietary vitamin ascorbate. DNA G(SO3) is also the major photoproduct of 6-TG in DNA and it can be selectively introduced into DNA or oligonucleotides in vitro by mild chemical oxidation. Thermal stability measurements indicate that G(SO3) does not form stable base pairs with any of the normal DNA bases in duplex oligonucleotides and is a powerful block for elongation by Klenow DNA polymerase in primer extension experiments. In cultured human cells, DNA damage produced by 6-TG and UVA treatment is associated with replication inhibition and provokes a p53-dependent DNA damage response.  相似文献   

10.
Micrococcal nuclease digestion of nuclei from sea urchin embryos revealed transient changes in chromatin structure which resulted in a reduction in the repeat length of nascent chromatin DNA as compared with bulk DNA. This was considered to be entirely the consequence of in vivo events at the replication fork (Cell 14, 259, 1978). However, a micrococcal nuclease-generated sliding of nucleosome cores relative to nascent DNA, which might account for the smaller DNA fragments, was not excluded. In vivo [3H]thymidine pulse-labeled nuclei were fixed with a formaldehyde prior to micrococcal nuclease digestion. This linked chromatin proteins to DNA and thus prevented any in vitro sliding of histone cores. All the nascent DNAs exhibiting shorter repeat lengths after micrococcal nuclease digestion, were resolved at identical mobilities in polyacrylamide gels of DNA from fixed and unfixed nuclei. We conclude that these differences in repeat lengths between nascent and bulk DNA was generated in vivo by changes in chromatin structure during replication, rather than by micrococcal nuclease-induced sliding of histone cores in vitro.  相似文献   

11.
Shibutani S  Suzuki N  Grollman AP 《Biochemistry》2004,43(50):15929-15935
We have investigated the mechanism of frameshift (deletion) mutagenesis induced by acetylaminofluorene- (AAF-) derived DNA adducts. dG-AAF-modified oligodeoxynucleotides, with different bases positioned 5' to the lesion, were annealed to (32)P-labeled 13-mer primers and then used in primer extension reactions catalyzed by the 3'-->5' exonuclease-free Klenow fragment of Escherichia coli DNA polymerase I. When the dNMP positioned opposite dG-AAF could pair with its complementary base at the 5' flanking position, single-base deletions were produced at high frequency. Similarly, when the complementary base was two positions 5' to the dG-AAF, two-base deletions occurred. The relative frequency of base insertions opposite dG-AAF followed the order dCMP > dAMP > dGMP > dTMP; the frequency of dNTP insertion opposite the lesion paralleled the formation of frameshift deletions. When a template designed to induce three-base deletions was used for translesion synthesis catalyzed by the exo(-) Klenow fragment, the expected three-base deletion was formed. When dG-AAF-modified templates containing iterated bases 5' to the lesion were annealed to primers with the complementary dNMP positioned opposite the lesion, the dNMP inserted opposite the dG-AAF tended to pair with the complementary base 5' to the lesion, thereby forming shorter deletions. Taken together, these results support the molecular mechanism for frameshift deletion proposed earlier by Shibutani and Grollman in which direct base insertion precedes misalignment [(1993) J. Biol. Chem. 268, 11703].  相似文献   

12.
13.
Methods have been developed and applied to determine the size and branching frequency of polymers of ADP-ribose synthesized in nucleotide-permeable cultured mouse cells and in intact cultured cells. Polymers were purified by affinity chromatography with a boronate resin and were fractionated according to size molecular sieve high-performance liquid chromatography. Fractions were enzymatically digested to nucleotides, which were separated by strong anion exchange high-performance liquid chromatography. From these data, average polymer size and branching frequency were calculated. A wide range of polymer sizes was observed. Polymers as large as 190 residues with at least five points of branching per molecule were generated in vitro. Polymers of up to 67 residues containing up to two points of branching per molecule were isolated from intact cells following treatment with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Cells treated with hyperthermia prior to DNA damage contained polymers of an average maximum size of 244 residues containing up to six points of branching per molecule. The detection of large polymers of ADP-ribose in intact cells suggests that alterations in chromatin organization effected by poly(ADP-ribosylation) may extend beyond the covalently modified proteins and very likely involve noncovalent interactions of poly(ADP-ribose) with other components of chromatin.  相似文献   

14.
Positioned nucleosomes limit the access of proteins to DNA. However, the impact of nucleosomes on DNA methylation in vitro and in vivo is poorly understood. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the de novo methyltransferases. We show that compared to linker DNA, nucleosomal DNA is largely devoid of CpG methylation. ATP-dependent chromatin remodelling frees nucleosomal CpG dinucleotides and renders the remodelled nucleosome a 2-fold better substrate for Dnmt3a methyltransferase compared to free DNA. These results reflect the situation in vivo, as quantification of nucleosomal DNA methylation levels in HeLa cells shows a 2-fold decrease of nucleosomal DNA methylation levels compared to linker DNA. Our findings suggest that nucleosomal positions are stably maintained in vivo and nucleosomal occupancy is a major determinant of global DNA methylation patterns in vivo.  相似文献   

15.
Genotoxicity of non-covalent interactions: DNA intercalators   总被引:1,自引:0,他引:1  
This review provides an update on the mutagenicity of intercalating chemicals, as carried out over the last 17 years. The most extensively studied DNA intercalating agents are acridine and its derivatives, that bind reversibly but non-covalently to DNA. These are frameshift mutagens, especially in bacteria and bacteriophage, but do not otherwise show a wide range of mutagenic properties. Di-acridines or di-quinolines may be either mono- or bis-intercalators, depending upon the length of the alkyl chain separating the chromophores. Those which monointercalate appear as either weak frameshift mutagens in bacteria, or as non-mutagens. However, some of the bisintercalators act as "petite" mutagens in Saccharomyces cerevisiae, suggesting that they may be more likely to target mitochondrial as compared with nuclear DNA. Some of the new methodologies for detecting intercalation suggest this may be a property of a wider range of chemicals than previously recognised. For example, quite a number of flavonoids appear to intercalate into DNA. However, their mutagenic properties may be dominated by the fact that many of them are also able to inhibit topoisomerase II enzymes, and this property implies that they will be potent recombinogens and clastogens. DNA intercalation may serve to position other, chemically reactive molecules, in specific ways on the DNA, leading to a distinctive (and wider) range of mutagenic properties, and possible carcinogenic potential.  相似文献   

16.
Cholesteric organization of DNA in vivo and in vitro   总被引:4,自引:0,他引:4  
In concentrated solutions DNA organizes spontaneously to form the "cholesteric" phase which is one type of liquid crystal. We have reproducibly obtained both continuous cholesteric phases and isolated cholesteric globules in equilibrium with the isotropic phase. A comparison is made between this in vitro cholesteric organization and dinoflagellate chromosomes which present the same organization in vivo. The observed defects are analyzed in the two cases. It appears that the cholesteric organization is due to self-assembly phenomena and that the shape of globules and chromosomes is due both to surface tensions and to the presence of defects.  相似文献   

17.
Exposure of DNA solutions to low levels (2 · 10?3M) of hydroxylamine-O-sulfonic acid (HOS) resulted in limited degradation accompanied by increases in the buoyant density of the DNA. The thermal helix-coil profile of the DNA was not changed significantly following exposure to HOS. Upon thermal denaturation, the treated DNA specimens exhibited buoyant density values similar to those of heated control DNA. This is taken to mean that an added function or a modified DNA base is removed upon heating. Exposure of DNA to elevated levels of HOS (>0.2 M) resulted in extensive degradation which was accompanied by spectral changes: a hyperchromic shift and an increase in the wavelength of maximum absorbance.Exposure of individual deoxynucleosides to HOS also resulted in spectral changes and in the detection of new reaction products by paper Chromatographic means.HOS preferentially inhibited the growth of a bacterial strain deficient in DNA polymerase. This is a property also exhibited by known mutagens and carcinogens. This is taken to mean that HOS is capable of reacting with the DNA of living cells as well.  相似文献   

18.
The Sloan-Kettering viruses (SKVs) are replication-defective retroviruses that transform avian cells in vitro. Each of the three SKV isolates is a mixture of viruses with genomes ranging in size from 4.1 to 8.9 kilobases (kb) with a predominant genome of 5.7 kb. Using a cDNA representing a sequence, v-ski, that is SKV specific and held in common by the multiple SKV genomes, we generated a restriction map of the 5.7-kb SKV genome and molecularly cloned a ski-containing fragment from SKV proviral DNA. Southern hybridization and sequence analysis showed that the cloned DNA fragment consisted of the 1.3-kb ski sequence embedded in the p19gag sequence and followed by the remaining 5' half of the gag gene and small portions of both the pol and env genes. A large deletion encompassing the 3' half of gag and the 5' 80% of pol was mapped to a position about 1 kb downstream from the 3' ski-gag junction. To determine whether the cloned ski sequence had transforming activity, the ski-containing fragment and a cloned Rous-associated virus 1 (RAV-1) genome were used to construct an analog of the 5.7-kb SKV genome, RAV-SKV. Cotransfection of chicken embryo cells with RAV-SKV and RAV-1 yielded foci of transformed cells whose morphology was identical to that induced by the natural SKVs. The transformed transfected cells produced transforming virus with a 5.7-kb ski-containing genome and synthesized a gag-containing polyprotein of 110 kilodaltons (kDa). Several nonproducer clones of RAV-SKV-transformed cells were analyzed, and most were found to synthesize a 5.7-kb SKV RNA and a 110-kDa polyprotein. One clone was found to contain an 8.9-kb SKV RNA, and this clone synthesized a 125-kDa polyprotein. Since both the 5.7- and 8.9-kb genomes and the 110- and 125-kDa polyproteins had been identified in studies on the natural SKVs, the present results not only demonstrate the transforming activity of these individual SKVs but also suggest mechanisms for their generation.  相似文献   

19.
Alkyl epoxides are important intermediates in the chemical industry. They are also formed in vivo during the detoxification of alkenes. Alkyl epoxides have shown genotoxicity in many toxicology assays which has been associated with their covalent binding to DNA. Here aspects of the formation and properties of DNA adducts, induced by some industrially important alkenes and mono-substituted epoxides are discussed. These include propylene oxide, epichlorohydrin, allyl glycidyl ether and the epoxy metabolites of styrene and butadiene. The major DNA adducts formed by epoxides are 7-substituted guanines, 1- and 3-substituted adenines and 3-substituted cytosines. In addition, styrene oxide and butadiene monoepoxide are able to modify exocyclic sites in the DNA bases, the sites being in the case of styrene oxide N(2)- and O(6)-positions of guanine, N(6)-adenine as well as N(4)-and O(2)-cytosine. In vivo the main adduct is the 7-substituted guanines. The 1-substituted adenines have also shown marked levels, and these adducts should also be targets in biomonitoring of human exposures. Due to its low mutagenicity, 7-substituted guanines are considered as a surrogate marker for other mutagenic lesions, e.g. those of 1-adenine or 3-uracil adducts.  相似文献   

20.
体外PCR扩增和体内DNA复制是获得复制DNA的2种途径,它们都依据半保留复制的原理,但因其操作的环境不同,所要求的条件和具体的过程又有所不同。针对高中学生的特点对这2个过程所需要的条件、PCR扩增引物的设计、体内DNA复制冈崎片段的连接方式等进行了分析总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号