首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant community biomass and composition on low-productivity soils, such as serpentine, may be more resistant to climate change because they host stress-tolerant species that may respond slowly to change. These communities also host a number of endemic taxa that are of special interest because of their narrow distributions. In a 3-year study, we experimentally tested the response of serpentine and non-serpentine communities to water addition in spring. We also compared the responses of endemics and generalists to water addition, with and without biomass (competitor) removal. In the non-serpentine grassland, peak biomass was significantly greater in the water addition plots compared with control plots, but this effect depended on the year. In the serpentine grassland, there was no effect of water addition on biomass. Survival, biomass, growth rates, and seed production of soil endemics and generalists were all significantly reduced by competition, but were unaffected by water addition. Overall, endemics tended to perform better in serpentine soil and generalists in non-serpentine soil, suggesting that soil is an important factor for the establishment and survival of endemics and generalists. For endemics, the effect of biomass removal was stronger on non-serpentine soil, but for generalists this effect was similar on both soils, indicating that competition can be important in low-resource habitats. In conclusion, our results suggest that low-fertility plant communities may be slow to respond to changes in precipitation compared to communities on more fertile soil.  相似文献   

2.
The diversity of ectomycorrhizal communities associated with Quercus garryana on and off serpentine soils was compared and related to landscape-level diversity. Serpentine soils are high in magnesium, iron, and heavy metals and low in fertility. In plant communities on serpentine soils, a high proportion of flowering plant species are endemic. At three sites with paired serpentine and nonserpentine soils in southwestern Oregon, we sampled Q. garryana roots and categorized ectomycorrhizas by morphotyping and by restriction fragment length patterns. Ectomycorrhizas were abundant at all sites; no single fungal species dominated in the ectomycorrhizas. Of 74 fungal species characterized by morphotype and pattern of restriction fragment length polymorphisms, 46 occurred on serpentine soils, and 32 were unique to serpentine soil. These species are potentially endemic to serpentine soil. Similarities in species composition between paired serpentine and nonserpentine soils were not significantly lower than among three serpentine sites or among three nonserpentine sites. We conclude that mycorrhizal communities associated with oaks on serpentine soil do not differ in species richness or species evenness from those on neighboring nonserpentine soil.  相似文献   

3.
Although plant adaptation to serpentine soils has been studied for several decades, the mechanisms of plant adaptation to edaphic extremes are still poorly understood. Arbuscular mycorrhizal fungi (AMF) are common root symbionts that can increase the plant hosts' establishment and growth in stressful environments. However, little is known about the role plant-AMF interactions play in plant adaptation to serpentine. As a first step towards understanding this role, we examined the AMF assemblages associated with field populations of serpentine and non-serpentine ecotypes of California native plant Collinsia sparsiflora. We sampled roots of C. sparsiflora from three serpentine and three non-serpentine sites in close proximity (110 m to 1.94 km between sites) and analysed the small subunit ribosomal DNA gene amplified from root DNA extracts using AMF-specific primers. A total of 1952 clones from 24 root samples (four from each site) were sequenced. We used sequence similarity and phylogenetic analysis to determine operational taxonomic units (OTU) resulting in 19 OTUs representing taxa from six AMF genera, including one serpentine-specific OTU. We used Bray-Curtis similarity, multidimensional scaling and analysis of similarity to compare root sample AMF assemblages. These analyses clearly showed that plant ecotypes associated with distinct AMF assemblages; an Acaulospora OTU-dominated serpentine, and a Glomus OTU-dominated non-serpentine assemblages. Species diversity and evenness were significantly higher in serpentine assemblages. Finally, relate analysis showed a relationship between ecotype AMF assemblages and soil nutrients. This study reveals a strong relationship between AMF associates and plant adaptation to edaphic extremes.  相似文献   

4.
Serpentine soils are hostile to plant life. They are dry, contain high concentrations of nickel and have an unfavorable calcium/magnesium ratio. The dioecious plant Silene dioica (L.) Clairv. (Caryophyllaceae) is the most common herb on serpentine soils in the Swedish mountains. It also commonly grows on non-serpentine soils in the subalpine and coastal area. I have compared the germination frequency, plant establishment and growth of serpentine and subalpine non-serpentine populations in serpentine soil under greenhouse conditions. Further more I have studied the specific effect of nickel on root and shoot growth of serpentine and non-serpentine plants from the subalpine and coastal area in solutions with different concentrations of nickel. Plants from serpentine and non-serpentine populations grew well and in a similar fashion in serpentine soil. Moreover, S. dioica plants, irrespective of original habitat, tolerated enhanced concentrations of nickel when grown in solutions. An analysis of metal content in serpentine plants from natural populations shows that S. dioica has a higher nickel concentration in the roots than in the shoots. The growth studies show that S. dioica is constitutively adapted to serpentine, and that all populations have the genetic and ecological tolerance to grow on serpentine.  相似文献   

5.
Background: Diversity patterns of plant communities are related to the environment, including productivity and patchiness of habitat.

Aims: To determine differences in diversity patterns between serpentine and non-serpentine communities.

Methods: A two-year study was conducted in native eastern Mediterranean grasslands. For each year 40 0.25 m2 plots were sampled across four pairs of sites, each of which contained a serpentine and an adjacent non-serpentine plant community. Alpha and beta diversity (variation in species composition among plots within localities), species composition and biomass production were determined. Total soil elemental concentrations and pH were also measured.

Results: Serpentine habitats were shown to support a lower alpha diversity relative to non-serpentine habitatas on a per plot basis. Differences in alpha diversity between the two substrates were associated with variation in soil chemistry rather than above-ground biomass production. Serpentine habitats also exhibited lower beta diversity, which was unrelated to variation in biomass production. The two contrasting communities presented distinct species composition.

Conclusions: Differences in diversity patterns between serpentine and non-serpentine communities in the eastern Mediterranean are influenced by soil chemistry rather than biomass production.  相似文献   


6.
Orchids are known for their species richness, intriguing ecology, rarity and the fact that they grow in almost all terrestrial ecosystems. Although numerous studies about their ecology have been carried out concerning calcareous areas, little is known about orchids that occur in serpentine habitats. The aim of this study was to investigate the ecological preferences of orchids in serpentine and non-serpentine areas on the model of the Valjevo Mountain Range (W Serbia). Niche analysis of orchids was performed using outlying mean index analysis. Data concerning geographical coordinates, altitude, habitat type, inclination, bedrock type, light regime, soil moisture, acidity, nitrogen and temperature were used as explanatory variables. Data of 33 orchid taxa from 407 localities were analysed. The most important gradients that govern orchid distribution were geological bedrock, light regime and temperature. The results have shown that only Anacamptis morio and Gymnadenia conopsea have statistically significantly larger populations on serpentine compared with non-serpentine bedrocks. This study highlights the importance of serpentine habitats as orchid habitats, bearing in mind the occurrence of rare species and species which were found exclusively in serpentine habitats.  相似文献   

7.
Specialization in plant host-symbiont-soil interactions may help mediate plant adaptation to edaphic stress. Our previous field study showed ecological evidence for host-symbiont specificity between serpentine and non-serpentine adapted ecotypes of Collinsia sparsiflora and arbuscular mycorrrhizal fungi (AMF). To test for adapted plant ecotype-AMF specificity between C. sparsiflora ecotypes and field AMF taxa, we conducted an AMF common garden greenhouse experiment. We grew C. sparsiflora ecotypes individually in a common pool of serpentine and non-serpentine AMF then identified the root AMF by amplifying rDNA, cloning, and sequencing and compared common garden AMF associates to serpentine and non-serpentine AMF controls. Mixing of serpentine and non-serpentine AMF soil inoculum resulted in an intermediate soil classified as non-serpentine soil type. Within this common garden both host ecotypes associated with AMF assemblages that resembled those seen in a non-serpentine soil. ANOSIM analysis and MDS ordination showed that common garden AMF assemblages differed significantly from those in the serpentine-only controls (R = 0.643, P<0.001), but were similar the non-serpentine-only control AMF assemblages (R = 0.081, P<0.31). There was no evidence of adapted host ecotype-AMF specificity. Instead soil type accounted for most of the variation AM fungi association patterns, and some differences between field and greenhouse behavior of individual AM fungi were found.  相似文献   

8.
Serpentine soil, which is naturally high in heavy metal content and has low calcium to magnesium ratios, comprises a difficult environment for most plants. An impressive number of species are endemic to serpentine, and a wide range of non-endemic plant taxa have been shown to be locally adapted to these soils. Locating genomic polymorphisms which are differentiated between serpentine and non-serpentine populations would provide candidate loci for serpentine adaptation. We have used the Arabidopsis thaliana tiling array, which has 2.85 million probes throughout the genome, to measure genetic differentiation between populations of Arabidopsis lyrata growing on granitic soils and those growing on serpentinic soils. The significant overrepresentation of genes involved in ion transport and other functions provides a starting point for investigating the molecular basis of adaptation to soil ion content, water retention, and other ecologically and economically important variables. One gene in particular, calcium-exchanger 7, appears to be an excellent candidate gene for adaptation to low CaratioMg ratio in A. lyrata.  相似文献   

9.
Edaphic factors can lead to differences in plant morphology and tissue chemistry. However, whether these differences result in altered plant–insect interactions for soil-generalist plants is less understood. We present evidence that soil chemistry can alter plant–insect interactions both directly, through chemical composition of plant tissue, and indirectly, through plant morphology, for serpentine-tolerant Mimulus guttatus (Phrymaceae). First, we scored floral display (corolla width, number of open flowers per inflorescence, and inflorescence height), flower chemistry, pollinator visitation and florivory of M. guttatus growing on natural serpentine and non-serpentine soil over 2 years. Second, we conducted a common garden reciprocal soil transplant experiment to isolate the effect of serpentine soil on floral display traits and flower chemistry. And last, we observed arrays of field-collected inflorescences and potted plants to determine the effect of soil environment in the field on pollinator visitation and florivore damage, respectively. For both natural and experimental plants, serpentine soil caused reductions in floral display and directly altered flower tissue chemistry. Plants in natural serpentine populations received fewer pollinator visits and less damage by florivores relative to non-serpentine plants. In experimental arrays, soil environment did not influence pollinator visitation (though larger flowers were visited more frequently), but did alter florivore damage, with serpentine-grown plants receiving less damage. Our results demonstrate that the soil environment can directly and indirectly affect plant–mutualist and plant–antagonist interactions of serpentine-tolerant plants by altering flower chemistry and floral display.  相似文献   

10.
We selected two geographically close serpentine and non-serpentine populations of a Ni-hyperaccumulating plant (Alyssum inflatum) to investigate the influence of two common factors of serpentine soils: high Ni concentrations and low Ca/Mg quotients. Soils and plants were sampled from serpentine and non-serpentine substrates, and concentrations of Ca, Mg and Ni were measured. A hydroponic culture was used to compare growth and elemental composition responses of serpentine and non-serpentine plants to different Ca/Mg quotients and Ni concentrations in the nutrient solution. The Ca/Mg quotient for non-serpentine soils was 15 times higher than for serpentine soils, but there was no difference in the Ca/Mg quotient of plants from the two populations. In hydroponic culture, plants from both populations were able to survive at high Ca/Mg quotients. This result suggests that serpentine plants of A. inflatum do not necessarily need a substrate with a low Ca/Mg quotient for survival. Decreases in the Ca/Mg quotient in hydroponics decreased growth. The magnitude of this decrease was significantly greater in non-serpentine plants, suggesting a greater resistance of serpentine plants to low Ca/Mg quotients. Total Ni concentration in serpentine soils was 13 times higher than in non-serpentine soils, but ammonium nitrate-extractable concentrations of Ni in both soil types were similar. Ni concentrations in non-serpentine plants from their natural habitat were significantly lower than in serpentine plants, but there was no significant difference in Ni accumulation by plants of the two populations in hydroponic culture. However, increased concentrations of Ni in the hydroponic medium caused similar decreases in growth of both populations, indicating that Ni tolerance of the two populations was similar.  相似文献   

11.
Porter SS  Stanton ML  Rice KJ 《PloS one》2011,6(12):e27935
Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion.  相似文献   

12.
Serpentine soils represent a unique environment that imposes multiple stresses on vegetation (low Ca/Mg ratios, macronutrient deficiencies, elevated heavy metal concentrations and drought). Under these conditions, a substantial role of arbuscular mycorrhizal (AM) symbiosis can be anticipated due to its importance for plant nutrition and stress alleviation. We tested whether serpentine and non-serpentine populations of Knautia arvensis (Dipsacaceae) differ in the benefits derived from native AM fungal communities. Four serpentine and four non-serpentine populations were characterised in terms of mycorrhizal colonisation and soil characteristics. The serpentine populations showed significantly lower mycorrhizal colonisation than their non-serpentine counterparts. The mycorrhizal colonisation positively correlated with soil pH, Ca and K concentrations and Ca/Mg ratio. Seedlings from each population were then grown for 3 months in their sterilised native substrates, either uninoculated or reinoculated with native AM fungi. Two serpentine and two non-serpentine populations responded positively to mycorrhizal inoculation, while no significant change in plant growth was observed in the remaining populations. Contrary to our hypothesis, serpentine populations of K. arvensis did not show higher mycorrhizal growth dependence than non-serpentine populations when grown in their native soils and inoculated with native AM fungi.  相似文献   

13.
Whittaker first proposed to measure the variation in species composition among plots or beta-diversity as the ratio between regional diversity (gamma-diversity) and average local diversity (alpha-diversity). More recently, an alternative way of partitioning diversity for which beta-diversity is obtained as the difference between gamma-diversity and average alpha-diversity has become very popular for linking the structure of species assemblages to ecosystem functioning in a spatially explicit manner. Unfortunately, additive beta-diversity computed from species presences and absences suffers from the major drawback of being dependent on regional species richness. For instance, if the separation between beta-diversity and gamma-diversity is incomplete, so that variation in species composition is affected by species richness, then differences in beta-diversity values among different sets of plots could reflect differences in the species count rather than any fundamental difference in species composition among the plots. Based on the above observation, in this paper I will first propose a basic requirement for beta-diversity measures that adequately captures our intuitive notion of independence of species richness. Next, I will show that additive beta-diversity computed from species presence and absence scores can be interpreted within the framework of fuzzy set theory. Finally, based on this unusual "fuzzy" interpretation of additive beta-diversity, I will introduce two families of parametric beta-diversity measures whose members have varying sensitivities to the presence of rare and frequent species.  相似文献   

14.
Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20?cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6?months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.  相似文献   

15.
BACKGROUND AND AIMS: Serpentine soils are characterized by the presence of heavy metals (Ni and Cr) and excess Mg; these elements often suppress plant growth. Picea glehnii is nevertheless distributed widely on serpentine soils in northern Japan. Growth characteristics were compared among P. glehnii, Picea jezoensis (distributed in the same region) and Picea abies (planted for timber production), and concentrations of elements in various tissues over time and the amount of ectomycorrhizal infection in short roots were evaluated. METHODS: Seedlings of three spruce species were planted in two types of experimental plots, comprising serpentine soil and brown forest (non-serpentine) soil, and these seedlings were grown for 3 years. Growth, ectomycorrhizal infection of short roots, and elemental composition of tissues were examined. KEY RESULTS: The total dry mass of P. glehnii planted on serpentine soil was almost the same as on brown forest soil, and a large number of needles survived to reach later age classes. By contrast, growth of P. jezoensis and P. abies in serpentine soil was significantly less than in brown forest soil, and needle shedding was accelerated. Moreover, roots of seedlings of P. glehnii on serpentine soil were highly infected with ectomycorrhiza, and the concentration of Ni in needles and roots of P. glehnii was the lowest of the three species. CONCLUSIONS: Picea glehnii has a high ability to maintain a low concentration of Ni, and the ectomycorrhizal infection may have the positive effect of excluding Ni. As a result, P. glehnii is more tolerant than the other spruce species to serpentine soil conditions.  相似文献   

16.
Adaptive phenotypic plasticity and adaptive genetic differentiation enable plant lineages to maximize their fitness in response to environmental heterogeneity. The spatial scale of environmental variation relative to the average dispersal distance of a species determines whether selection will favor plasticity, local adaptation, or an intermediate strategy. Habitats where the spatial scale of environmental variation is less than the dispersal distance of a species are fine grained and should favor the expression of adaptive plasticity, while coarse-grained habitats, where environmental variation occurs on spatial scales greater than dispersal, should favor adaptive genetic differentiation. However, there is relatively little information available characterizing the link between the spatial scale of environmental variation and patterns of selection on plasticity measured in the field. I examined patterns of spatial environmental variation within a serpentine mosaic grassland and selection on an annual plant (Erodium cicutarium) within that landscape. Results indicate that serpentine soil patches are a significantly finer-grained habitat than non-serpentine patches. Additionally, selection generally favored increased plasticity on serpentine soils and diminished plasticity on non-serpentine soils. This is the first empirical example of differential selection for phenotypic plasticity in the field as a result of strong differences in the grain of environmental heterogeneity within habitats.  相似文献   

17.
Bowé (hardened ferricrete soils formed by erosion, drought or deforestation) are often associated with termite mounds, but little is known about these mounds and their role in the restoration of soils and plant biodiversity on bowé. This study examined termite mounds on bowé and their effects on soil depth and plant richness. Sixty-four sampling plots were laid out randomly on bowé sites with mounds and on adjacent bowé sites without mounds. The height and circumference of each mound were measured. Species inventories were made and soil depth measured in each plot. Linear mixed effects and generalised mixed effects models with Poisson error distribution were used to assess the variation in soil depth and plant species richness in mound and nonmound microsites. Two types of mounds (small vs. large) associated with different termite species were observed on bowé, with the small mounds being most common. Plots with either large or small mounds had deeper soils and higher plant richness than the adjacent plots without mounds. Conservation of termite mounds is important for restoring soils and plant richness on bowé, and termite mounds should be taken into consideration in biodiversity and soil management strategies for bowé.  相似文献   

18.
Background: Serpentine ecosystems support different, often unique, plant communities; however, we know little about the soil organisms that associate with these ecosystems. Mycorrhizas, mutualistic symbioses between fungi and roots, are critical to nutrient cycling and energy exchange below ground.

Aims: We address three hypotheses: H1, diversity of mycorrhizal fungi in serpentine soils mirrors above-ground plant diversity; H2, the morphology of mycorrhizas and fungi on serpentine soils differs from that on non-serpentine; and H3, mycorrhizal fungal communities of the same or closely related hosts differ between serpentine and non-serpentine soils.

Methods: This review focuses on whether plant diversity on serpentine soils correlates with the below ground diversity of mycorrhizal fungi.

Results: Studies show that plants and fungi formed abundant ectomycorrhizal and arbuscular mycorrhizal symbioses on and off serpentine soils. No serpentine-endemic fungi were identified. Molecular analyses indicate distinct serpentine isolates for Cenococcum geophilum and for Acaulospora, suggesting adaptation to serpentine soils. While fungal sporocarp assemblages on serpentine sites resembled those off serpentine, fruiting of hypogeous fungi was greatly reduced.

Conclusions: Ectomycorrhizal fungal communities did not differ between soil types; however, arbuscular mycorrhizal communities differed in some cases but not others. The additive response to multiple factors, described as the serpentine syndrome, may explain part of the response by fungi.  相似文献   


19.
Susan Harrison 《Oecologia》1999,118(1):99-106
Serpentine meadows in Northern California supported higher species richness at the 1-m2 scale than adjacent nonserpentine meadows, and had a considerably higher proportion of native species. Within each soil type, total species richness (natives plus aliens) was unrelated to biomass, cover, soil depth, or soil characteristics (N, P, Ca++, Mg++, water-holding capacity). However, the proportion of native species on serpentine was higher in meadows with lower levels of phosphorus and a lower calcium/magnesium ratio; the proportion of native species in nonserpentine meadows was higher on cool (north to northeast facing) slopes. At a regional scale, some of these effects were partly reversed; the rate at which new species accumulated with the addition of new sites, or beta diversity, was highest for native plant species in nonserpentine meadows. All of the above effects were independent of whether grazing by cattle was absent (removed 13 years ago) or present. The status of low-productivity serpentine soils as a refuge for native grassland species appears to be the result of their abiotic resistance to alien species, but not of a negative relationship between productivity and total species richness. Received: 10 April 1999 / Accepted: 4 June 1999  相似文献   

20.
Abstract Declines in plant species richness with increasing altitude are common, but the form of the relationship can vary, with both monotonic decreasing relationships and humped relationship recorded. However, these different richness to altitude relationships may be due to methods that used different plot sizes/areas and survey efforts. To explore native and exotic plant richness along an altitudinal gradient in the Snowy Mountains of Australia, we consistently surveyed plots that were 120 m2 in area at 39 sites ranging from 540 to 2020 m. To relate exotic plant richness to disturbance, we surveyed plots at 16 sites along main roads and 23 sites along minor roads and also compared these 39 roadside plots to 120‐m2 plots located in undisturbed vegetation adjacent to the roadside (native plant richness was only surveyed in 25 of these 39 adjacent plots). We found a negative linear relationship between total, exotic and native species richness and altitude for plots on the side of main roads (16 sites) and minor roads (23 sites). For adjacent plots negative linear relationships were significant for all measures of species richness except for native species adjacent to major roads. As the pattern occurred for exotics it is less likely to be due to historical constraints on the species pools. The pattern could be influenced by difference in levels of disturbance along the gradient, although any such gradient in disturbance would have to apply to roadside and adjacent plots on major and minor roads. Therefore, it may be due to other factors such as changes in climate along the altitudinal gradient, although additional sampling including direct measures of climatic conditions, soil and disturbance factors would be needed to determine if this was the case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号