首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuropeptide Y (NPY), endothelin-1 (ET-1), and angiotensin II (Ang II) are peptides that are known to play many important roles in cardiovascular homeostasis. The physiological actions of these peptides are thought to be primarily mediated by plasma membrane receptors that belong to the G-protein-coupled receptor superfamily. However, there is increasing evidence that suggests the existence of functional G-protein-coupled receptors at the level of the nucleus and that the nucleus could be a cell within a cell. Here, we review our work showing the presence in the nucleus of the NPY Y(1) receptor, the ET(A) and ET(B) receptors, as well as the AT(1) and AT(2) receptors and their respective ligands. This work was carried out in 20-week-old fetal human endocardial endothelial cells. Our results demonstrate that nuclear Y1, AT(1), and ET(A) receptors modulate nuclear calcium in these cells.  相似文献   

2.
NPY regulates human endocardial endothelial cell function   总被引:1,自引:0,他引:1  
Growing evidence suggests that endocardial endothelial cells (EECs) may play an important role in the regulation of cardiac function by releasing several cardioactive factors such as endothelin-1 (ET-1), Angiotensin II (Ang II) and nitric oxide (NO). In our laboratory, we demonstrated that similar to ET-1, EECs do possess different types of NPY receptors, specifically Y(1) and Y(2) receptors. Furthermore, activation of these receptors was found to increase the steady-state level of intracellular free Ca(2+) in EECs and the frequency of beating of cardiomyocytes. In addition, NPY was also found to be present in EECs, and an increase of steady-state intracellular free Ca(2+) induced the release of this peptide from these cells. Thus, similar to ET-1, NPY seems to be released from EECs and this peptide seems to regulate excitation-secretion of these cells as well as excitation-contraction coupling of ventricular cardiomyocytes.  相似文献   

3.
The 3-dimensional confocal microscopy technique has allowed us to identify the presence of yet another cardioactive factor and its receptor, namely neuropeptide Y (NPY) and its Y1 receptor, at the level of vascular smooth muscle cells and heart cells including endocardial endothelial cells (EECs). Using this technique, we also demonstrated that NPY is able to induce an increase in both cytosolic and nuclear calcium in all these cell types. Furthermore, besides being expressed at the level of EECs, NPY is also released from these cells following a sustained increase of intracellular Ca2+. This suggests the ability of NPY to contribute to the regulation of the excitation-secretion coupling of EECs and the excitation-contraction coupling of cardiomyocytes and vascular smooth muscle cells.  相似文献   

4.
Summary The fine structure of the endocardium of the rat was studied at the level of the papillary muscles. In accordance with what is already known about endothelial cells of blood vessels, the occurrence of numerous vesicles underlying the plasma membrane was observed, indicating the pinocytotic activity of the endocardial endothelial cells.The plasma membrane, as in all other cells, consists of two electron-dense layers separated by a light interspace. However, after phosphotungstic acid staining, it appears as a thickened single band at the free cell surface. This characteristic feature decreases towards the lateral cell boundaries. Intensely stained are also clumps of material pinched off from the plasma membrane and released into the cavity.Assistant at the Department of Anatomy of the University, Torino, Italy (Dir.: Prof. F. Loretti). The author was awarded a grant from the Italian Consiglio Nazionale delle Ricerche for the present investigation.The author wishes to thank Mrs. Behrens and Miss Anhut for excellent technical assistance.  相似文献   

5.
To study the effect of NPY deletion on the regulation of its receptors in the NPY knockout (NPY KO) mice, the expression and binding of NPY receptors were investigated by in situ hybridization and receptor autoradiography using (125)I-[Leu(31),Pro(34)]PYY and (125)I-PYY(3-36) as radioligands. A 6-fold increase in Y2 receptor mRNA was observed in the CA1 region of the hippocampus in NPY KO mice, but a significant change could not be detected for Y1, Y4, Y5 and y6 receptors. Receptor binding reveals a 60-400% increase of Y2 receptor binding in multiple brain areas. A similar increase in Y1 receptor binding was seen only in the hypothalamus. These results demonstrate the NPY receptor expression is altered in mice deficient for its natural ligand.  相似文献   

6.
Despite substantial evidence for the central role of hemodynamic shear stress in the functional integrity of vascular endothelial cells, hemodynamic and molecular regulation of the endocardial endothelium lining the heart chambers remains understudied. We propose that regional differences in intracardiac hemodynamics influence differential endocardial gene expression leading to phenotypic heterogeneity of this cell layer. Measurement of intracardiac hemodynamics was performed using 4-dimensional flow MRI in healthy humans (n=8) and pigs (n=5). Local wall shear stress (WSS) and oscillatory shear indices (OSI) were calculated in three distinct regions of the LV – base, mid-ventricle (midV), and apex. In both the humans and pigs, WSS values were significantly lower in the apex and midV relative to the base. Additionally, both the apex and midV had greater oscillatory shear indices (OSI) than the base. To investigate regional phenotype, endocardial endothelial cells (EEC) were isolated from an additional 8 pigs and RNA sequencing was performed. A false discovery rate of 0.10 identified 1051 differentially expressed genes between the base and apex, and 321 between base and midV. Pathway analyses revealed apical upregulation of genes associated with translation initiation. Furthermore, tissue factor pathway inhibitor (TFPI; mean 50-fold) and prostacyclin synthase (PTGIS; 5-fold), genes prominently associated with antithrombotic protection, were consistently upregulated in LV apex. These spatio-temporal WSS values in defined regions of the left ventricle link local hemodynamics to regional heterogeneity in endocardial gene expression.  相似文献   

7.
8.
Sokolowski MB 《Neuron》2003,39(1):6-8
Neuropeptide Y is implicated in the regulation of feeding in vertebrates, but recent studies in transgenic mice are contradictory. In this issue of Neuron, Wu et al. show a dual role for the Drosophila NPY (dNPF) in the developmental regulation of larval foraging and social behaviors, demonstrating a conserved role for this peptide in complex behaviors.  相似文献   

9.
T型钙通道存在于心血管、神经和内分泌系统.T型钙通道在心脏自律性,细胞生长和心脏重塑中起关键性的作用.心脏疾病时T型钙通道表达增多.因此T型钙通道在生理和病理生理情况下均可参与心脏功能的调节.随着对钙通道研究的日益加深,可望更深刻地了解T型钙通道并研制出新的钙通道拮抗剂,这对心脏疾病的治疗策略具有重要的意义.  相似文献   

10.
Our laboratory studies the biology and enzyme regulation of inositol signal transduction pathways, which are activated in response to a wide range of stimuli. As a six-carbon cyclitol, inositol and its numerous phosphorylated derivatives efficiently generate combinatorial ensembles of signaling molecules. Through the cloning and characterization of inositol polyphosphate kinases (IPK), novel roles for inositol tetrakisphosphate (IP4), inositol pentakisphosphate (IP5), and inositol hexakisphosphate (IP6) and inositol pyrophosphates (PP-IPs), have been identified. Studies have linked the IPKs and their inositide products to the regulation of nuclear processes including gene expression, chromatin remodeling, mRNA export, DNA repair and telomere maintenance. Analysis of IPK knockout animals has revealed a role for production of IPs in regulation of embryogenesis and organism development.The discoveries of the IPK proteins and their connection to nuclear signaling have generated significant interest in the field. Furthermore, they have provided interesting clues into the evolution of inositide-signaling pathways. Ipk2/IPMK and IPS/IP6K family members are conserved from yeast to man. In contrast, the IP3 3-kinase (ITPK) branch is observed in selected metazoans and not in plant or fungi. This may imply that Ipk2 and IPS activities evolved first among the group. The promiscuity of the Ipk2 protein further supports this notion and may provide the cell with a means to generate many IP species in a genetically economical fashion. Studies of yeast inositide signaling reveal that these simple eukaryotes do not have an IP3 receptor in their genome and do not utilize diacylglycerol to activate protein kinase C. Thus, it appears that the canonical “text book” aspects of inositide-signaling pathways are not conserved throughout eukaryotic evolution. In light of the conservation of Ipk2/IPMK, Ipk1 and IPS/IP6K pathways from yeast to man it is interesting to speculate that a primordial role of phospholipase C-induced, IPK-dependent inositide signaling was to regulate nuclear processes. As calcium and PKC signaling evolved in metazoans, these may have greatly enhanced signaling capabilities. Recent studies demonstrating an essential role for IP5, IP6 and possibly PP-IP production in metazoan development highlight the importance of IPK signaling in cellular responses in metazoans. With these thoughts in mind, we eagerly await future studies aimed at further elucidating how these signaling codes participate in developmental processes and the control of gene expression, mRNA export, and DNA metabolism.  相似文献   

11.
12.
13.
14.
核受体隶属配体依赖性的转录调控因子超家族,与机体的生长发育、细胞分化、生殖以及代谢过程中的基因表达调控密切相关.本文就核受体家族参与哺乳动物胚泡着床研究方面的进展作一简要综述.  相似文献   

15.
16.
17.
Nuclear receptors are involved in regulating the expression of cholesterol 7alpha-hydroxylase (CYP7A1), however, their roles in the up-regulation of CYP7A1 by cholestyramine (CSR) are still unclear. In the present study, male Wistar rats were divided into four groups and fed [high sucrose + 10% lard diet] (H), [H + 3% CSR diet] (H + CSR), [H + 0.5% cholesterol + 0.25% sodium cholate diet] (C), or [C + 3% CSR diet] (C + CSR) for 2 weeks. Cholestyramine decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but had no effect on these parameters in rats fed H-based diets. Cholestyramine raised hepatic levels of CYP7A1 mRNA and activity in both groups. The gene expression of hepatic ATP-binding cassettes A1 and G5, regulated by liver X receptor (LXR), were unchanged and down-regulated by cholestyramine, respectively. The mRNA levels of the hepatic ATP-binding cassette B11 and short heterodimer partner (SHP), regulated by farnesoid X receptor (FXR), were not changed by cholestyramine. C-based diets, which contained cholesterol and cholic acid, increased SHP mRNA levels compared to H-based diets. Consequently, in rats fed the C+CSR diet, hepatic FXR was activated by dietary bile acids, but the hepatic CYP7A1 mRNA level was increased 16-fold compared to that in rats fed an H diet. These results suggest that cholestyramine up-regulates the expression of CYP7A1 independently via LXR- or FXR-mediated pathways in rats.  相似文献   

18.
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.  相似文献   

19.
The effect of exogenous ATP and its analogs on heart function was studied in 14–100-day-old rats. Extracellular purines had a positive chronotropic effect on the heart. Intravenous administration of exogenous ATP and its stable analogs induced a dose-dependent increase in heart rate depending on animal age. The analysis of isometric contraction of myocardial strips demonstrated a dose-dependent positive inotropic effect of ATP. The family and subtype of the P2 receptors realizing the positive chronotropic and inotropic effects were identified using selective agonists and blockers. P2X receptors demonstrated the highest sensitivity during early postnatal ontogeny. The age-related pattern of the receptor response to exogenous purines indicated the heterochronic maturation of P2X and P2Y receptors in the myocardium.  相似文献   

20.
A Kamiya  J Ando  M Shibata  H Masuda 《Biorheology》1988,25(1-2):271-278
The effects of fluid shear stress on the function and structure of the vascular system are outlined, based on the findings obtained in our laboratory or of our colleagues. First, it is pointed out that the adaptive response of the vascular wall to flow changes which we observed in the canine carotid artery shunted with the jugular vein altering the internal diameter to keep the wall shear stress constant, can attain the optimum vascular branching structure as predicted in the minimum work model by Murray. Electronmicroscopic studies of similarly shunted arteries revealing various morphological changes in the endothelial cells have suggested that the shear stress initially affects the endothelium. The in vitro experiments using cultured endothelial cells as well have exhibited that the mitotic activity of the cells significantly increases by applying fluid shear stress. From these findings, it is concluded that the adaptive response of the endothelium to the fluid shear stress is an inherent and key process locally regulating the vascular system to be in the most functional state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号