首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A rapid radiometric assay for epoxide hydratase activity has been developed using the highly mutagenic [3H]benzo(a)pyrene 4,5-(K-region-)oxide as substrate. By addition of dimethylsulfoxide after the incubation, conditions were found where the unreacted substrate could be separated from the product benzo(a)pyrene-4,5-dihydrodiol(trans) simply by extraction into petroleum ether. The product is then extracted into ethyl acetate and, radioactivity is measured by scintillation spectrometry. This assay allows a rapid measurement of epoxide hydratase activity with an epoxide derived from a carcinogenic polycyclic hydrocarbon as substrate and is at the same time sensitive enough for accurate determination of epoxide hydratase activity in preparations with extremely low enzyme levels such as rat skin homogenate (8–14 pmol of product/mg of protein/min).  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, -1A3, and -1E1 as the isozymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of 3'-[(35)S]phosphoadenosine 5'-phosphosulfate as the sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-monosulfate products that were identified by reversed phase HPLC and by LC-MS/MS. The various SULT isoforms produced the two isomers in different proportions. Two-dimensional (1)H and (13)C NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (k(cat)/K(m)) and yielded a single isomeric product corresponding to M1. By contrast, SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency, and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.  相似文献   

4.
Cytosolic glutathione S-transferase (GST) and microsomal epoxide hydrolase (EH) are important detoxification enzymes for many epoxide xenobiotics. We have developed a rapid, simple, and convenient HPLC assay which measures both of these enzyme activities toward benzo[a]pyrene-4,5-oxide (BaPO) in tissue homogenates. Tissue fractions were incubated at 37 degrees C in the presence of 5 mM glutathione. Reactions were initiated by addition of BaPO and terminated by the addition of ice-cold acetonitrile containing 2-methoxynaphthalene as an internal standard. Samples were analyzed directly on a 15-cm C18 reverse-phase column at room temperature, with a ternary solvent program which utilized 0.01% ammonium phosphate buffer (pH 3.5), acetonitrile, and water. The uv absorbance (260 nm) was monitored. Baseline resolution of BaPO, BaPO-GSH, and BaPO-diol and the internal standard was accomplished in 10 min. In rat hepatic S9, production of both BaPO-GSH and BaPO-diol was linear with time and protein up to 15 min and 500 micrograms/ml, respectively. Coefficients of variation for replicate analyses were 2.7 and 3.7% for GST and EH activities in S9, respectively. With fluorescence detection (ex, 241; em, 389 nm), this assay was sensitive enough to measure GST and EH activities in mononuclear leukocytes (MNL). GST and EH activities in 109 human MNL samples were 142 +/- 74 (mean +/- SD; range 21-435) pmol/mg/min and 19 +/- 9 (mean +/- SD; range 3-59) pmol/mg/min, respectively. These results demonstrate the simplicity, high sensitivity, and applicability of this assay for a broad range of tissues.  相似文献   

5.
6.
Metabolism of benzo(a)pyrene (BP) and 7,8-dihydrodiol by 3-methylcholanthrene (MC)-induced rat liver microsomes are both subject to severe inhibition by primary metabolites of BP, which was analyzed by determining individual inhibition constants for all primary BP metabolites for both BP and 7,8-dihydrodiol metabolism. Monooxygenation of 7,8-dihydrodiol was, surprisingly, 5 to 10 times more sensitive than monooxygenation of BP to inhibition by all primary metabolites, even though both reactions require the same enzyme, cytochrome P-450c. Two representative products, 1,6-quinone and 9-phenol, were both strong, competitive inhibitors of BP metabolism with Ki values of 0.12 and 0.74 microM, respectively. The total effect of product inhibition on the overall reactions was determined by fitting progress curves of BP, 7,8-dihydrodiol, and anti-7,8-dihydrodiol 9,10-oxide (determined as 7,10/8,9-tetrol) over a range of BP concentrations to integrated steady-state equations using experimental Vmax and Km values. The effective product inhibition factors for BP and 7,8-dihydrodiol metabolism, determined from progress curve fits, were only 2-fold higher than the corresponding calculated theoretical values. The effective product inhibition factors, obtained from progress curve analysis, confirmed that 7,8-dihydrodiol metabolism was substantially more sensitive to inhibition by primary BP metabolites than BP metabolism itself. This difference probably reflects the much higher affinity of cytochrome P-450c for BP (Kd = 6 nM), as compared to 7,8-dihydrodiol (Kd = 175 nM) that was established spectrophotometrically both for the purified cytochrome and for MC microsomes. The Km for BP metabolism is 50 to 100 times higher than the Kd, while the Km is similar to the Kd for 7,8-dihydrodiol metabolism. The discrepancy for BP between Km and Kd suggests that standard Michaelis-Menten kinetics may be perturbed by either slow substrate or product dissociation.  相似文献   

7.
A rapid, high-yield method has been developed for the N-acylation of sphingosine-1-phosphocholine (SPC) to obtain a series of sphingomyelin (SM) derivatives bearing different reporter groups in the N-acyl chain. The procedure utilizes a fatty acid activated as the N-hydroxysuccinimide ester. A 1:1 molar mixture of the activated fatty acid and SPC is refluxed in 5% aqueous NaHCO3-ethanol 9:1 (v/v) for 2-3 hr. After acidification, the precipitated SM is purified by column chromatography over silica gel. This procedure offers significant advantages over those reported for the synthesis of well-defined SM: i) only the amino (not the hydroxyl) group is acylated; ii) only one equivalent of fatty acid is required; and iii) the time necessary for the reaction to go to completion is short. The transition temperature and enthalpy of each SM derivative has been measured by differential scanning calorimetry and compared to its unlabeled analog.  相似文献   

8.
When the major reactive metabolite of benzo(a)pyrene, trans -7,8-dihydroxy - anti-9,10-epoxy -7,8,9,10-tetrahydrobenzo(a)pyrene (anti-BPDE) is incubated with DNA in aqueous solution at 25°C, both covalent binding and hydrolysis of anti-BPDE to its tetraols occur. Using fluorescence and absorption spectroscopy it is shown that hydrolysis of anti-BPDE is markedly accelerated by DNA. In the presence of 5A260 units of DNA per ml in cacodylate buffer solution, at an initial concentration of DNA phosphate/anti-BPDE ratio of 100, both the extent of covalent binding to DNA ( < 7% of the total anti-BPDE initially present) and hydrolysis of anti-BPDE reach their maximum levels within less than five minutes after mixing. Absorption and electric linear dichroism spectra indicate that the tetraols bind non-covalently to DNA by an intercalation mechanism, whereas the covalent product displays the characteristics of an externally bound complex.  相似文献   

9.
10.
Mechanism of lipid peroxidation triggered by vanadium in human term placental microsomes was reinvestigated in vitro. Production of lipid peroxyl radicals was estimated from co-oxygenation of benzo(a)pyrene and benzo(a)pyrene-7,8-dihydrodiol. Vanadyl(IV), but not vanadate(V) caused a dose-dependent co-oxygenation. Vanadate(V) required the presence of reduced nicotinamide adenine dinucleotide phosphate to trigger co-oxygenation of benzo(a)pyrene-7,8-dihydrodiol. To determine the role of pre-formed lipid hydroperoxides, the results obtained with partially peroxidized linoleic acid were compared with those of fresh linoleate. Superoxide dismutase inhibited the co-oxygenation of reaction when fresh linoleic acid was used. To further characterize the role of superoxide anion-radical in the vanadium redox cycling, the increase of optical density of vanadate(V) dissolved in Tris buffer was measured at 328 nm during the addition of KO2. The rate of this reaction producing peroxy-vanadyl complex was decreased by superoxide dismutase, especially, in the presence of catalase. It is suggested that vanadium catalyzes two separate processes, both leading to enhanced lipid peroxidation: (i) initiation, dependent on superoxide and triggered by peroxy-vanadyl; (ii) propagation, dependent on pre-formed lipid hydroperoxide not sensitive to superoxide dismutase. It is postulated that the vanadium-triggered initiation of lipid peroxidation may be crucial for toxicity in organs with limited endogenous lipid peroxidation.  相似文献   

11.
Purified duck reticulocyte DNA was incubated in vitro with a 7,8-dihydrodiol-9,10-oxide derivative of benzo(a)pyrene (BPDE). The carcinogen-modified DNA was somewhat more susceptible to partial digestion by the single strand specific endonuclease S1 than unmodified DNA, suggesting slight denaturation of the helix at sites of modification. Chromatin was reconstituted in vitro utilizing this carcinogen-modified DNA and unmodified-chromatin associated proteins. This reconstituted chromatin showed the same kinetics and extent of digestion by Staphylococcal nuclease, and similar nucleosome profiles on sucrose density gradient centrifugation, as those obtained with native chromatin or chromatin reconstituted with unmodified DNA. Moreover, polyacrylamide gel electrophoresis of DNA fragments obtained from nuclease digests gel electrophoresis of DNA fragments obtained from nuclease digests of the reconstituted chromatins suggested that the chromatin containing carcinogen-modified DNA had the same subnucleosome structure as that reconstituted with unmodified DNA. In a separate set of studies intact duck reticulocyte chromatin was reacted directly with BPDE. Nuclease digestion studies indicated that 65% of the carcinogen was bound to the ‘open’ regions of chromatin, and 35% to ‘closed’ regions.These results indicate that although covalent binding of a benzo(a)pyrene (BP) derivative to DNA produces local distortions in conformation of the helix, this modification does not appear to interfere with the ability of the DNA to associate with histones to form nucleosome structures. In addition, although DNA in the open regions of chromatin is more susceptible to reaction with the BP derivative, there is appreciable reaction with the DNA associated with histones.  相似文献   

12.
A new sesquiterpene, 12-hydroxycaryophyllene-4,5-oxide, has been isolated from the ethanolic extract of Lactarius camphoratus. The structure, stereochemistry and absolute configuration were determined by a combination of spectral data and single-crystal X-ray analysis of the p-bromobenzoate derivative.  相似文献   

13.
When single-stranded ØX174 DNA is exposed to certain dihydrodiol derivatives of benzo[a]pyrene and benz[a]anthracene, inhibition of viral DNA infectivity is observed. Binding studies with labeled trans-7,8-dihydrodiol of benzo[a]pyrene and anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide indicate that the diol preferentially reacts with single-stranded DNA, whereas the diolepoxide reacts equally well with both single- and double-stranded DNA, as well as with RNA. Also, the diol and diolepoxide derivatives show a marked difference in their capacity to complex with specific deoxyhomopolymers, i.e., Poly dI. These observations suggest that the diol and diolepoxide derivatives recognize different binding sites in nucleic acids, and that the diol derivative may play an important role in mutagenesis and carcinogenesis induced by polycyclic aromatic hydrocarbons.  相似文献   

14.
Lipoxygenase-catalyzed epoxidation of benzo(a)pyrene-7,8-dihydrodiol   总被引:3,自引:0,他引:3  
Metabolism of resolved radioactive stereoisomer, [14C](+)-benzo-(a)pyrene-trans-7,8-dihydrodiol by highly purified soybean lipoxygenase plus linoleic acid was investigated. Trans-anti-7,8,9,10-tetrahydrotetrol, the product of hydrolytic breakdown of ultimate mutagenic benzo(a)pyrene-anti-7,8-dihydrodiol,9,10-epoxide, was detected as a major metabolite. The epoxidation, depended on the enzyme concentration and was inhibited by nordihydroguaiaretic acid. This study provides evidence on the ability of lipoxygenase to catalyze the epoxidation of benzo(a)pyrene-7,8-dihydrodiol.  相似文献   

15.
Incubation of benzo[alpha] pyrene 4,5-oxide with poly(G) in neutral aqueous ethanol resulted in the formation of covalent adducts and in the production of free 4-hydroxybenzo[alpha]pyrene. This phenol, which was identified by its UV spectral properties and by its chromatographic characteristics, was also formed but at a much slower rate when the epoxide was incubated with DNA or with GMP. Phenol formation was not detected when benzo[alpha]-pyrene 4,5-oxide was incubated for prolonged periods in the presence of poly(A), poly(C) or poly(U) or in the absence of nucleic acid. Formation of 4-hydroxybenzo[alpha] pyrene from the epoxide in the presence of poly(G) was not accompanied by detectable base modifications or by breakage of phosphodiester linkages.  相似文献   

16.
Benzo(a)pyrene 4,5-oxide is reduced to benzo(a)pyrene by microsomes in the presence of NADPH. Carbon monoxide and oxygen inhibit this reduction. The liver has highest activity which is almost lackng in new-born rats. Phenobarbital as well as 3-methylcholanthrene pretreatment increases the epoxide reduction. Additions of FMN or methylviologen stimulate the epoxide reduction; dimethylaniline N-oxide and cumene hydroperoxide are inhibitory. These results indicate that benzo(a)pyrene 4,5-oxide is reduced by the reduced form of cytochrome P-450.  相似文献   

17.
Benzo[a]pyrene-7,8-quinone (BPQ) is one of the reactive metabolites of the widely distributed archetypal polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). The formation of BPQ from B[a]P through trans-7,8-dihydroxy-7,8-dihydroB[a]P by the mediation of aldo-keto reductases and its role in the genotoxicity and carcinogenesis of B[a]P currently are under extensive investigation. Toxicity pathways related to BPQ are believed to include both stable and unstable (depurinating) DNA adduct formation as well as reactive oxygen species. We previously reported the complete characterization of four novel stable BPQ-deoxyguanosine (dG) and two BPQ-deoxyadenosine (dA) adducts (Balu et al., Chem. Res. Toxicol. 17 (2004) 827-838). However, the identification of BPQ-DNA adducts by 32P postlabeling methods from in vitro and in vivo exposures required 3'-monophosphate derivatives of BPQ-dG, BPQ-dA, and BPQ-deoxycytidine (dC) as standards. Therefore, in the current study, BPQ adducts of dGMP(3'), dAMP(3'), and dCMP(3') were prepared. The syntheses of the BPQ-3'-mononucleotide standards were carried out in a manner similar to that reported previously for the nucleoside analogs. Reaction products were characterized by UV, LC/MS analyses, and one- and two-dimensional NMR techniques. The spectral studies indicated that all adducts existed as diastereomeric mixtures. Furthermore, the structural identities of the novel BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adducts were confirmed by acid phosphatase dephosphorylation of the BPQ-nucleotide adducts to the corresponding known BPQ-nucleoside adduct standards. The BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adduct standards were used in 32P postlabeling studies to identify BPQ adducts formed in vitro with calf thymus DNA and DNA homopolymers. 32P postlabeling analysis revealed the formation of 8 major and at least 10 minor calf thymus DNA adducts. Of these BPQ-DNA adducts, the following were identified: 1 BPQ-dGMP adduct, 2 BPQ-dAMP adducts, and 3 BPQ-dCMP adducts. This study represents the first reported example of the characterization of stable BPQ-DNA adducts in isolated mammalian DNA and is expected to contribute significantly to the future BPQ-DNA adduct studies in vivo and thereby to the contribution of BPQ in B[a]P carcinogenesis.  相似文献   

18.
P S Coker  J Radecke  C Guy  N D Camper 《Phytomedicine》2003,10(2-3):133-138
The study reported herein utilized the Agrobacterium tumefaciens-induced potato disc tumor assay. The objective was to verify the detection of antineoplastic activity in the potato disc tumor induction assay, regardless of the mode of antineoplastic drug action. Camptothecin, paclitaxel, podophyllin, vinblastine and vincristine were tested, each with a different mode of action. All drugs tested inhibited tumor induction. The order of activity was: camptothecin = paclitaxel = vinblastine < podophyllin = vincristine. No effect on the viability of the bacterium was detected. The A. tumefaciens-induced potato disc tumor assay was an effective indicator of antitumor activity regardless of the mechanism of drug action. Thus, this assay would be acceptable as a primary general screen for antineoplastic activity of various crude extracts, as well as for purified fractions, regardless of mode of inhibitory action on tumor formation.  相似文献   

19.
20.
Saccharomyces cerevisiae, brewer's yeast, produces a microsomal benzo(a)pyrene hydroxylase when grown at high glucose concentrations of which the haemoprotein, cytochrome P-450 (RH, reduced-flavoprotein:oxygen oxidoreductase (RH-hydroxylating) EC 1.14.14.1) is a component. We report here kinetic data derived from Lineweaver-Burk plots of benzo(a)pyrene hydroxylation. The Michaelis constant was decreased by growth of the yeast in the presence of benzo(a)pyrene showing the induction of a form of the enzyme more specific for this compound. NADPH or cumene hydroperoxide could be used as cofactors by this enzyme, although with different Km and V values for benzo(a)pyrene. A solubilised and a solubilised, immobilised enzyme preparation were capable of benzo(a)pyrene hydroxylation, using cumene hydroperoxide but not NADPH as the cofactor. Benzo(a)pyrene was found to produce a modified type I spectral change with yeast and rat liver microsomes. The interaction of benzo(a)pyrene with cytochrome P-450 was investigated further by means of an equilibrium gel filtration technique. There appeared to be 20 binding sites per mol ofcytochrome P-450 for benz(a)pyrene, in both yeast and rat liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号