首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation of oxidative stress during fracture healing in the rats   总被引:2,自引:0,他引:2  
One of the most damaging effects of reactive oxygen species (ROS) is lipid peroxidation, the end-product of which is malondialdehyde (MDA). This study was aimed to evaluate erythrocyte MDA levels during fracture healing in rats. Thirty male rats were used and the rats were divided into two groups to serve as controls and tests. Six rats were used as a control group that was not subject to fracture. The remaining 24 rats were divided into four groups and erythrocyte MDA levels were examined on days 5, 10, 20 and 30 post fracture. The right fibulas of rats were broken by manual angulation in the experimental group. The erythrocyte malondialdehyde level was measured in the experimental and control groups. The difference between malondialdehyde levels of control and experimental groups was statistically significant (p<0.05). Oxidative stress clearly increases during fracture healing in rats.  相似文献   

2.
The existence of a homeostatic state of stresses and strains has been axiomatic in the cardiovascular system. The objective of this study was to determine the distribution of circumferential stress and strain along the aorta and throughout the coronary arterial tree to test this hypothesis. Silicone elastomer was perfused through the porcine aorta and coronary arterial tree to cast the arteries at physiological pressure. The loaded and zero-stress dimensions of the vessels were measured. The aorta (1.8 cm) and its secondary branches were considered down to 1.5 mm diameter. The left anterior descending artery (4.5 mm) and its branches down to 10 microm were also measured. The Cauchy mean circumferential stress and midwall stretch ratio were calculated. Our results show that the stretch ratio and Cauchy stress were lower in the thoracic than in the abdominal aorta and its secondary branches. The opening angle (theta) and midwall stretch ratio (lambda) showed a linear variation with order number (n) as follows: theta = 10.2n + 63.4 (R(2) = 0.989) and lambda = 4.47 x 10(-2)n + 1.1 (R(2) = 0.995). Finally, the stretch ratio and stress varied between 1.2 and 1.6 and between 10 and 150 kPa, respectively, along the aorta and left anterior descending arterial tree. The relative uniformity of strain (50% variation) from the proximal aorta to a 10-microm arteriole implies that the vascular system closely regulates the degree of deformation. This suggests a homeostasis of strain in the cardiovascular system, which has important implications for mechanotransduction and for vascular growth and remodeling.  相似文献   

3.
BACKGROUND: An in vivo gene therapy strategy was developed to accelerate bone fracture repair. METHODS: Direct injection of a murine leukemia virus-based vector targeted transgene expression to the proliferating periosteal cells arising shortly after fracture. Cyclooxygenase-2 (Cox-2) was selected because the transgene for its prostaglandin products that promote angiogenesis, bone formation and bone resorption, are all required for fracture healing. The human (h) Cox-2 transgene was modified to remove AU-rich elements in the 3'-untranslated region and to improve protein translation. RESULTS: In vitro studies revealed robust and sustained Cox-2 protein expression, prostaglandin E(2) and alkaline phosphatase production in rat bone marrow stromal cells and osteoblasts transgenic for the hCox-2 gene. In vivo studies in the rat femur fracture revealed that Cox-2 transgene expression produced bony union of the fracture by 21 days post-fracture, a time when cartilage persisted within the fracture tissues of control animals and approximately 1 week earlier than the healing normally observed in this model. None of the ectopic bone formation associated with bone morphogenetic protein gene therapy was observed. CONCLUSIONS: This study represents the first demonstration that a single local application of a retroviral vector expressing a single osteoinductive transgene consistently accelerated fracture repair.  相似文献   

4.
Fracture healing is a specialized postnatal repair process that recapitulates many aspects of embryological skeletal development. While many of the molecular mechanisms that control cellular differentiation and growth during embryogenesis recur during fracture healing, these processes take place in a postnatal environment that is unique and distinct from those which exist during embryogenesis. A number of the central biological processes that are believed to be crucial in the embryonic differentiation and growth of skeletal tissues and play a functional role in fracture healing are reviewed. The functional modification of these various developmental processes of fracture healing is discussed in the context of how different pharmacological agents might alter fracture healing.  相似文献   

5.
6.
The natural frequency of fracture fragments has been measured at various times in the course of healing of 11 midshaft tibial fractures. The major fragments manifest different frequencies which are themselves distinct from that of the intact bone. It has been shown that the difference in frequency between the major fragments falls with time, so that the separate frequencies approach a common value which corresponds with the healed state. The results have been used to construct a model healing curve, against which other tibial fractures can be compared.  相似文献   

7.
The healing process for bone fractures is sensitive to mechanical stability and blood supply at the fracture site. Most currently available mechanobiological algorithms of bone healing are based solely on mechanical stimuli, while the explicit analysis of revascularization and its influences on the healing process have not been thoroughly investigated in the literature. In this paper, revascularization was described by two separate processes: angiogenesis and nutrition supply. The mathematical models for angiogenesis and nutrition supply have been proposed and integrated into an existing fuzzy algorithm of fracture healing. The computational algorithm of fracture healing, consisting of stress analysis, analyses of angiogenesis and nutrient supply, and tissue differentiation, has been tested on and compared with animal experimental results published previously. The simulation results showed that, for a small and medium-sized fracture gap, the nutrient supply is sufficient for bone healing, for a large fracture gap, non-union may be induced either by deficient nutrient supply or inadequate mechanical conditions. The comparisons with experimental results demonstrated that the improved computational algorithm is able to simulate a broad spectrum of fracture healing cases and to predict and explain delayed unions and non-union induced by large gap sizes and different mechanical conditions. The new algorithm will allow the simulation of more realistic clinical fracture healing cases with various fracture gaps and geometries and may be helpful to optimise implants and methods for fracture fixation.  相似文献   

8.
9.
The ultimate goal of all signaling pathways in cytokinesis is to control the mechanical separation of the mother cell into two daughter cells. Because of the intrinsic mechanical nature of cytokinesis, it is essential to understand fully how cell shapes and the material properties of the cell are generated, how these shapes and material properties create force, and how motor proteins such as myosin-II modify the system to achieve successful cytokinesis. In this review (which is part of the Cytokinesis series), we discuss the relevant physical properties of cells, how these properties are measured and the basic models that are used to understand cell mechanics. Finally, we present our current understanding of how cytokinesis mechanics work.  相似文献   

10.
11.
The results of the epizootological survey of the track of the Irtysh-Karaganda canal for tularemia for the period of 1971-1982 are presented. Out of 928 fecal samples from mouse-hunting birds, 16 contained the specific antigen. From Arctic shrews a strain of Francisella tularensis was isolated.  相似文献   

12.
13.
The ability to monitor the healing of bone fractures is crucially important in their treatment. The aim of the present study was to develop and validate an objective method for monitoring fracture healing based on bone vibrational response. An analytic model was formulated, with which the mechanical parameters at the fracture site could be studied in relation to both lateral and axial bone vibration. Non-uniformities in the stiffness of the bone at the fracture site can be detected since they produce shifting of the vibration and the phase spectrum and result in strong coupling between the lateral and axial vibration response spectra. The validity of the model was tested in experiments using fresh cadaver tibiae with transverse osteotomy and materials simulating fracture callus. The results of the study of vibration amplitude and phase angle and the coupling of axial and lateral vibration in these experiments confirm our analytic projection. Preliminary results of in vivo investigations using the described method are encouraging.  相似文献   

14.
15.
16.

Background  

The iconic Pilbara in northwestern Australia is an ancient geological and biophysical region that is an important zone of biodiversity, endemism and refugia. It also is overlain by some of the oldest erosion surfaces on Earth, but very little is known about the patterns of biotic diversity within the Pilbara or how they relate to the landscape. We combined phylogenetic and spatial-autocorrelation genetic analyses of mitochondrial DNA data on populations of the gekkotan lizard Lucasium stenodactylum within the Pilbara with geological, distributional and habitat data to test the hypothesis that ancient surface geology predicts current clade-habitat associations in saxicoline animals.  相似文献   

17.
The trauma and sepsis that follow open fractures and wounds may lead to the production of various cytokines. Understanding wound healing requires a direct knowledge of the specific cytokines and the respective wound fluid levels that are present at the wound site. An animal model was designed that mimics the open fracture and the clinical repair of the human, high-energy open fracture. Canine right tibiae were fractured with a penetrating, captive-bolt device, then repaired in a standard clinical fashion using an interlocking intramedullary nail. Before primary wound closure, microdialysis probes were placed at the fracture site and in a muscle located at a contralateral site. Canines received one of the following experimental protocols: (1) tibial fracture (n = 5); (2) tibial fracture plus Staphylococcus aureus inoculation at the fracture site (n = 5); and (3) tibial fracture, S. aureus inoculation, and a rotational gastrocnemius muscle flap (n = 5). Microdialysis fluid samples were collected intermittently for 7 days. Tumor necrosis factor alpha (TNFalpha) levels at the fracture site were significantly elevated 3 to 34-fold (p<0.02), as compared with respective serum levels at all time points for all treatment groups. Fracture site TNFalpha levels were elevated (p<0.02) in days 1 through 6, as compared with the baseline and contralateral in all treatment groups. At days 1 through 6, the TNFalpha levels of the muscle flap group fracture site were significantly decreased by approximately 50 percent (p<0.05), as compared with the fractures without muscle flaps and regardless of additional S. aureus inoculation. On day 7, fracture site TNFalpha levels in all animal groups were similar, yet remained well above those of baseline TNFalpha. These results demonstrate that S. aureus does not further elevate TNFalpha levels in the presence of an open fracture and that a muscle flap reduces pro-inflammatory TNFalpha levels during early wound healing. This experimental model allows for the characterization of specific biological signals and cellular pathways that are influenced by bacterial infection and surgical closure. These data provide a scientific framework on which to judge or validate therapeutic regimens for open-fracture wound healing.  相似文献   

18.
Osteogenic growth peptide enhances the rate of fracture healing in rabbits   总被引:12,自引:0,他引:12  
The discovery of growth factors, such as osteogenic growth peptide (OGP), that stimulate bone formation led to experiments to discover whether they can accelerate fracture healing. To determine whether OGP enhances the rate of healing in rabbits, fractures were made in the tibiae of New Zealand White rabbits and immobilized with either a plastic plate (unstable mechanical conditions), or a dynamic compression plate (stable mechanical conditions). OGP was administered to experimental animals by intravenous injection from day 4 until the day before sacrifice; control animals were not injected. After treatment with OGP, callus development under unstable mechanical conditions was accelerated. At 7 days, the cartilage in the centre of the callus was covered by bone and endochondral ossification had started; these events occur at 10 days in control fractures. Subsequently, endochondral ossification is completed earlier which allows the invasion of the fracture gap by cells, so that cortical union is complete by 21 to 28 days. In control fractures, bone is only beginning to form in the gaps at 28 days. There was no increase in the size of the callus in any of the experimental fractures compared to the untreated controls. Treatment with OGP has no observable effect on the rate of healing of fractures under stable mechanical conditions. These observations suggest that under unstable mechanical conditions only, the rate of callus formation and subsequent cortical healing is enhanced by treatment with OGP, but that the size of the callus is determined by mechanical and other factors.  相似文献   

19.
20.
Investigations are reported in the literature, by means of experimental, analytical and numerical methods, concerning the biomechanical properties of bone. However, the evolutionary phenomena of bone fracture healing does not have a large reference literature. This work investigates and describes the behaviour of inclined human femur fractures with external fixation up to complete healing. A numerical formulation based on the finite element method has been adopted. Geometric configuration is defined using data from a magnetic resonance process applied to a femur in vivo. A three dimensional model has been developed by adopting an orthotropic material law for cortical bone and an isotropic law for the fracture gap zone. Stress and strain reponses of the bone and fixation device are investigated with reference to the evolutionary behaviour of the healing tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号