首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of Rhodopseudomonas viridis cytochrome c2 and horse cytochrome c with Rps. viridis photosynthetic reaction centers were studied by using both single- and double-flash excitation. Single-flash excitation of the reaction centers resulted in rapid photooxidation of cytochrome c-556 in the cytochrome subunit of the reaction center. The photooxidized cytochrome c-556 was subsequently reduced by electron transfer from ferrocytochrome c2 present in the solution. The rate constant for this reaction had a hyperbolic dependence on the concentration of cytochrome c2, consistent with the formation of a complex between cytochrome c2 and the reaction center. The dissociation constant of the complex was estimated to be 30 microM, and the rate of electron transfer within the 1:1 complex was 270 s-1. Double-flash experiments revealed that ferricytochrome c2 dissociated from the reaction center with a rate constant of greater than 100 s-1 and allowed another molecule of ferrocytochrome c2 to react. When both cytochrome c-556 and cytochrome c-559 were photooxidized with a double flash, the rate constant for reduction of both components was the same as that observed for cytochrome c-556 alone. The observed rate constant decreased by a factor of 14 as the ionic strength was increased from 5 mM to 1 M, indicating that electrostatic interactions contributed to binding. Molecular modeling studies revealed a possible cytochrome c2 binding site on the cytochrome subunit of the reaction center involving the negatively charged residues Glu-93, Glu-85, Glu-79, and Glu-67 which surround the heme crevice of cytochrome c-554.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The soluble electron transfer protein content of Rhodopseudomonas rutila was found to consist of two basic cytochromes and a (4Fe-4S) ferredoxin. Cytochrome c' was easily identified by its characteristic high spin absorption spectra. The native molecular weight is 29,000 and the subunit is 14,000. Cytochrome c-550 has low spin absorption spectra and a high redox potential (376 mV) typical of cytochromes c2. The molecular weight is about 14,000. The ferredoxin is apparently a dimer (43,000) of approximately 18,000 Da subunits. There are 1.3 to 1.5 iron-sulfur clusters per monomer of 18- to 21-kDa protein. The N-terminal amino acid sequence is like the (7Fe-8S) ferredoxins of Rhodobacter capsulatus and Azotobacter vinelandii. Remarkably, there are only 2 or 3 out of 25 amino acid substitutions. Difference absorption spectra of Rps. rutila membranes indicate that there is not tetraheme reaction center cytochrome c, such as is characteristic of Rps. viridis. However, there are a high potential cytochrome c and a low potential cytochrome b in the membrane, which are suggestive of a cytochrome bc1 complex. Rps. rutila is most similar to Rps. palustris in microbiological properties, yet it does not have the cytochromes c-556, c-554, and c-551 in addition to c2 and c', which are characteristic of Rps. palustris. Furthermore, the Rps. rutila cytochrome c' is dimeric, whereas the same protein from Rps. palustris is the only one known to be monomeric. The cytochrome pattern is more like that of Rhodospirillum rubrum and Rb. capsulatus, which are apparently only able to make cytochromes c2 and c'.  相似文献   

3.
A combined electrochemical and FTIR spectroscopic approach was used to identify the vibrational modes of tyrosines in cytochrome c oxidase from Paracoccus denitrificans which change upon electron transfer and coupled proton transfer. Electrochemically induced FTIR difference spectra of the Tyr-D4-labeled cytochrome c oxidase reveal that only small contributions arise from the tyrosines. Contributions between 1600 and 1560 cm(-1) are attributed to nu8a/8b(CC) ring modes. The nu19(CC) ring mode for the protonated form of tyrosines is proposed to absorb with an uncommonly small signal at 1525-1518 cm(-1) and for the deprotonated form at 1496-1486 cm(-1), accompanied by the increase of the nu19(CC) ring mode of the Tyr-D(4)-labeled oxidase at approximately 1434 cm(-1). A signal at 1270 cm(-1) can be tentatively attributed to the nu7'a(CO) and delta(COH) mode of a protonated tyrosine. Uncommon absorptions, like the mode at 1524 cm(-1), indicate the involvement of Tyr280 in the spectra. Tyr280 is a crucial residue close to the binuclear center and is covalently bonded to His276. The possible changes of the spectral properties are discussed together with the absorbance spectra of tyrosine bound to histidine. The vibrational modes of Tyr280 are further analyzed in combination with the mutation to histidine, which is assumed to abolish the covalent bonding. The electrochemically induced FTIR difference spectra of the Tyr280His mutant point to a change in protonation state in the environment of the binuclear center. Together with an observed decrease of a signal at 1736 cm(-1), previously assigned to Glu278, a possible functional coupling is reflected. In direct comparison to the FTIR difference spectra of the D4-labeled compound and comparing the spectra at pH 7 and 4.8, the protonation state of Tyr280 is discussed. Furthermore, a detailed analysis of the mutant is presented, the FTIR spectra of the CO adduct revealing a partial loss of Cu(B). Electrochemical redox titrations reflect a downshift of the heme a3 midpoint potential by 95 +/- 10 mV. Another tyrosine identified to show redox dependent changes upon electron transfer is Tyr35, a residue in the proposed D-pathway of the cytochrome c oxidase.  相似文献   

4.
Cytochrome c-dependent electron transfer and apoptosome activation require protein-protein binding, which are mainly directed by conformational and specific electrostatic interactions. Cytochrome c contains four highly conserved tyrosine residues, one internal (Tyr67), one intermediate (Tyr48), and two more accessible to the solvent (Tyr74 and Tyr97). Tyrosine nitration by biologically-relevant intermediates could influence cytochrome c structure and function. Herein, we analyzed the time course and site(s) of tyrosine nitration in horse cytochrome c by fluxes of peroxynitrite. Also, a method of purifying each (nitrated) cytochrome c product by cation-exchange HPLC was developed. A flux of peroxynitrite caused the time-dependent formation of different nitrated species, all less positively charged than the native form. At low accumulated doses of peroxynitrite, the main products were two mononitrated cytochrome c species at Tyr97 and Tyr74, as shown by peptide mapping and mass spectrometry analysis. At higher doses, all tyrosine residues in cytochrome c were nitrated, including dinitrated (i.e., Tyr97 and Tyr67 or Tyr74 and Tyr67) and trinitrated (i.e., Tyr97, Tyr74, and Tyr67) forms of the protein, with Tyr67 well represented in dinitrated species and Tyr48 being the least prone to nitration. All mono-, di-, and trinitrated cytochrome c species displayed an increased peroxidase activity. Nitrated cytochrome c in Tyr74 and Tyr67, and to a lesser extent in Tyr97, was unable to restore the respiratory function of cytochrome c-depleted mitochondria. The nitration pattern of cytochrome c in the presence of tetranitromethane (TNM) was comparable to that obtained with peroxynitrite, but with an increased relative nitration yield at Tyr67. The use of purified and well-characterized mono- and dinitrated cytochrome c species allows us to study the influence of nitration of specific tyrosines in cytochrome c functions. Moreover, identification of cytochrome c nitration sites in vivo may assist in unraveling the chemical nature of proximal reactive nitrogen species.  相似文献   

5.
Four soluble c-type cytochromes, the high redox potential 4-Fe-S ferredoxin known as HiPIP, a large molecular weight 2-Fe-S ferredoxin and a 4-Fe-S 'bacterial' ferredoxin, were isolated from extracts of two strains of Rps. marina. Cytochrome c-550, cytochrome c' and cytochrome c-549 were previously described, and we have extended their characterization. Cytochrome c-558, which has not previously been observed in Rps. marina, appears to be a low-spin isozyme of the more commonly observed high-spin cytochrome c'. HiPIP, which was not observed in previous work, was found to be abundant in Rps. marina. The 2-Fe-S ferredoxin, which has previously been observed only in Rps. palustris, has a native size greater than 100 kDa and a subunit size of 17 kDa. The 'bacterial' ferredoxin appears to have only a single four-iron-sulfur cluster. We examined photosynthetic membranes by difference spectroscopy and found abundant c-type cytochromes. Approximately one-quarter of the heme can be reduced by ascorbate and the remainder by dithionite. There is 2 nm difference between the high-potential heme (554 nm) and the low (552 nm). These characteristics resemble those of the tetraheme reaction center cytochrome of Rps. viridis. In addition to the electron transfer components, we found small amounts of a fluorescent yellow protein which has spectral resemblance to a photoactive yellow protein from Ec. halophila.  相似文献   

6.
Ground state near-infrared absorption spectra of fully reduced unliganded and fully reduced CO (a2+ CuA+ a3(2+)-CO CuB+) cytochrome c oxidase were investigated. Flash-photolysis time-resolved absorption difference spectra of the mixed-valence (a3+ CuA2+ a3(2+)-CO CuB+) and the fully reduced CO complexes were also studied. A band near 785 nm (epsilon approximately 50 M-1cm-1) was observed in the fully reduced unliganded enzyme and the CO photoproducts. The time-resolved 785 nm band disappeared on the same timescale (t1/2 approximately 7 ms) as CO recombined with cytochrome a3(2+). This band, which is attributed to the unliganded five coordinate ferrous cytochrome a3(2+), has some characteristics of band III in deoxy-hemoglobin and deoxy-myoglobin. A second band was observed at approximately 710 nm (epsilon approximately 80 M-1cm-1) in the fully reduced unliganded and the fully reduced CO complexes. This band, which we assign to the low spin ferrous cytochrome a, appears to be affected by the ligation state at the cytochrome a3(2+) site.  相似文献   

7.
Reduction of cytochrome c oxidase is coupled to proton uptake, and the reduced-minus-oxidized FTIR spectrum should include signatures of protonation of protolytic centers. The major part of the spectrum shows only small differences between acidic and alkaline conditions, which is consistent with the rather weak pH dependence of the proton uptake stoichiometry. Here we aim at revealing redox state-dependent protonatable sites and present a comprehensive investigation over a wide pH range. The reduced-minus-oxidized transition of cytochrome c oxidase from Paracoccus denitrificans was studied by means of Fourier transform infrared spectroscopy in the pH range 5.2-9.5. Effects of pH were analyzed as the difference between reduced-minus-oxidized FTIR spectra at different pH values. Two pH-dependent processes with apparent pKa values of 6.6 and 8.4 and Hill coefficients 0.9 and 0.1, respectively, were found by this methodology. A sharp OH band appears in the IR "water region" on reduction of the enzyme, independent of pH in the range 6.5-9.0, and downshifted by approximately 940 cm-1 on changing the solvent to D2O and by 10 cm-1 on H216O/H218O isotope exchange. This feature of an asymmetric water molecule may belong to water that is produced in the binuclear center upon reduction or to a structured water molecule that loses a hydrogen bond.  相似文献   

8.
The size, visible absorption spectra, nature of haem and haem content suggest that the cytochrome c peroxidase of Paracoccus denitrificans is related to that of Pseudomonas aeruginosa. However, the Paracoccus enzyme shows a preference for cytochrome c donors with a positively charged 'front surface' and in this respect resembles the cytochrome c peroxidase from Saccharomyces cerevisiae. Paracoccus cytochrome c-550 is the best electron donor tested and, in spite of an acidic isoelectric point, has a markedly asymmetric charge distribution with a strongly positive 'front face'. Mitochondrial cytochromes c have a much less pronounced charge asymmetry but are basic overall. This difference between cytochrome c-550 and mitochondrial cytochrome c may reflect subtle differences in their electron transport roles. A dendrogram of cytochrome c1 sequences shows that Rhodopseudomonas viridis is a closer relative of mitochondria than is Pa. denitrificans. Perhaps a mitochondrial-type cytochrome c peroxidase may be found in such an organism.  相似文献   

9.
Sogabe S  Miki K 《FEBS letters》2001,491(3):174-179
The crystal structure of the oxidized cytochrome c(2) from Blastochloris (formerly Rhodopseudomonas) viridis was determined at 1.9 A resolution. Structural comparison with the reduced form revealed significant structural changes according to the oxidation state of the heme iron. Slight perturbation of the polypeptide chain backbone was observed, and the secondary structure and the hydrogen patterns between main-chain atoms were retained. The oxidation state-dependent conformational shifts were localized in the vicinity of the methionine ligand side and the propionate group of the heme. The conserved segment of the polypeptide chain in cytochrome c and cytochrome c(2) exhibited some degree of mobility, interacting with the heme iron atom by the hydrogen bond network. These results indicate that the movement of the internal water molecule conserved in various c-type cytochromes drives the adjustments of side-chain atoms of nearby residue, and the segmental temperature factor changes along the polypeptide chain.  相似文献   

10.
We have studied samples of oxidized (as isolated) cytochrome c1aa3 from Thermus thermophilus in the pH range 5.7 to 9.3 with M?ssbauer spectroscopy. In this pH range, the spectra of cytochromes c1 and a are independent of pH, whereas the spectra of cytochrome a3 are not. Most importantly, spectra taken in applied fields up to 6.0 T reveal the presence of multiple ferric forms of cytochrome a3. At any given pH value, at least two high-spin ferric cytochrome a3 species can be distinguished; in addition, most samples contain a low-spin ferric cytochrome a3 species (less than 20% of cytochrome a3). The M?ssbauer spectra show clearly that all forms of cytochrome a3 are spin coupled (to CuB). We have analyzed the high field (H greater than or equal to 1.5 tesla) spectra of a sample at pH 6.5 in the framework of a model that considers isotropic exchange-coupling, JS1.S2, between a high-spin ferric (S1 = 5/2) cytochrome a3 and cupric CuB (S2 = 1/2). In strong applied fields, the spectra can be fitted with any value for J greater than or equal to 0.5 cm-1. In the strong coupling case (J/D1 approximately greater than 3), a zero field splitting parameter D1 approximately 2.5 cm-1 is required for cytochrome a3; this value is distinctly smaller than those observed for high-spin ferric hemes (4-20 cm-1). A model assuming weak coupling magnitude of J approximately 1 cm-1, yields D1 approximately 8 cm-1 and a parameter set for cytochrome a3 quite similar to that reported for metmyoglobin. A J-value of approximately 1 cm-1 does not demand the presence of a ligand bridging between cytochrome a3 and CuB.  相似文献   

11.
We report the first resonance Raman scattering studies of NO-bound cytochrome c oxidase. Resonance Raman scattering and optical absorption spectra have been obtained on the fully reduced enzyme (a2+, a2+(3) NO) and the mixed valence enzyme (a3+, a2+(3) NO). Clear vibrational frequency shifts are detected in the lines associated with cytochrome a in comparing the two redox states. With 441.6 nm excitation the fully reduced preparation yields a spectrum similar to that of carbon monoxide-bound cytochrome c oxidase and is dominated by the spectrum of reduced cytochrome a. In contrast, in the mixed valence preparation no contributions from reduced cytochrome a are evident in the spectrum, verifying that this heme is no longer in the Fe2+ state. In the mixed valence NO-bound samples, a line appears at approximately 545 cm-1, a frequency similar to that found in NO-bound hemoglobin and myoglobin and assigned as an Fe-N-O-bending mode in those proteins. We do not detect this line in the spectrum of the fully reduced NO-bound enzyme. The carbonyl line of the cytochrome a3 heme formyl group in the fully reduced NO-bound enzyme appears at approximately equal to 1666 cm-1 in the resonance Raman spectrum. In the mixed valence NO-bound preparation the frequency of the carbonyl line increases by 1.2 cm-1 to approximately equal to 1667 cm-1. Thus, modes in cytochrome a2+(3) NO are sensitive to the redox state of the cytochrome a and/or CuA centers. We propose that the redox sensitivity of the formyl mode and the Fe-N-O mode results from an interaction between cytochrome a2+(3) (NO) and the cytochrome a-CuA pair, and is linked to the cytochrome a3 (NO) by the coupling between CuB and the NO-bound cytochrome a3 heme.  相似文献   

12.
Tin (Sn4+) and zinc (Zn2+) derivatives of horse heart cytochrome c have been prepared and their optical spectra have been characterized. Zinc cytochrome c has visible absorption maxima at 549 and 585 nm and Soret absorption at 423 nm. Tin cytochrome c shows visible absorption maxima at 536 and 574 nm and Soret absorption at 410 nm. Unlike iron cytochrome c in which the emission spectrum of the porphyrin is almost completely quenched by the central metal, the zinc and tin derivatives of cytochrome c are both fluorescent and phosphorescent. The fluorescence maxima of zinc cytochrome c are at 590 and 640 nm and the fluorescence lifetime is 3.2 ns. The fluorescence maxima of Sn cytochrome are at 580 and 636 nm and the fluorescence lifetime is under 1 ns. The quantum yield of fluorescence is Zn greater than Sn while the quantum yield of phosphorescence is Sn greater than Zn. at 77 K the fluorescence and phosphorescence emission spectra of Sn and Zn cytochrome c show evidence of resolution into vibrational bands. The best resolved bands occur at frequency differences 750 cm-1 and 1540--1550 cm-1 from the O-O transition. These frequencies correspond with those obtained by resonance Raman spectroscopy for in-plane deformations of the porphyrin macrocycle.  相似文献   

13.
O2-activated bovine heart cytochrome c oxidase has been examined by dual-mode EPR spectrometry. Resonances have been observed at g = 10 and 4.5 in the parallel mode and at g = 10, 5, 1.8 and 1.7 in the normal mode. The bulk of these signals are interpreted to come from a stoichiometric S = 2 system with magnitude of a = 0.17 cm-1, D = +2.1 cm-1, magnitude of E = 0.026 cm-1, g = 2. Exchange coupling between cytochrome a3 and CuB is not indicated.  相似文献   

14.
Optical features of cytochrome c oxidase in potato mitochondria have been characterized in the near-ir region. In order to discriminate the respective properties of the various redox centers, the redox state was monitored from free and inhibited, bound species. Appropriate comparisons singled out difference spectra which can be attributed specifically to CuA and CuB. The CuA difference spectrum (red-ox) exhibits a negative band centered at 812 nm and, analogous to its mammalian counterpart, the so-called 830-nm band (delta epsilon red/ox = -2.0 mM-1 cm-1). The unusual difference spectrum (red-ox) assigned to CuB is characterized by a broad positive band also centered at 812 nm with an extinction coefficient of delta epsilon red/ox = 4.3 mM-1 cm-1.  相似文献   

15.
Resonance Raman spectra were measured for various C-type cytochromes (mammalian cytochrome c, bacterial cytochrome c3, algal photosynthetic cytochrome f, and alkylated cytochrome c) and a B-type cytochrome (cytochrome b5) in their reduced and oxidized states. (1) For ferrous alkylated cytochrome c, a Raman line sensitive to the replacement of an axial ligand of the heme iron uas found around 1540 cm=1. This ligand-sensitive Raman line indicated the transition from acidic (1545 cm-1) to alkaline (1533 cm-1) forms with pK 7.9. The pH dependence of the Raman spectrum corresponded well to that of the optical absorption spectra. (2) For ferrous cytochrome f, the ligand-sensitive Raman line was found at the same frequency as cytochrome c (1545 cm-1). Accordingly two axial ligands are likely to be histidine and methionine as in cytochrome c. (3) For ferrous cytochrome c3, the frequency of the ligand-sensitive Raman line was between those of cytochrome c and cytochrome b5. Since two axial ligands of the heme iron in cytochrome c3 might be histidines. However, a combination of histidine and methionine as a possible set of two axial ligands was not completely excluded for one or two of the four hemes. (4) In ferrous cytochrome b5, two weak Raman lines appeared at 1302 and 1338 cm-1 instead of the strongest band at 1313 cm-1 of C-type ferrous cytochromes. This suggests the practical use of these bands for the identification of types of cytochromes. The difference in frequency and intensity between B- and C-types of hemes implies that the low effective symmetry of the heme in ferrous cytochrome c is due to vibrational coupling of ring modes with peripheral substituents rather than geometrical disortion of heme.  相似文献   

16.
T Ogura  S Yoshikawa  T Kitagawa 《Biochemistry》1985,24(26):7746-7752
Occurrence of photoreduction of bovine cytochrome c oxidase was confirmed with the difference absorption spectra and oxygen consumption measurements for the enzyme irradiated with laser light at 406.7, 441.6, and 590 nm. The resonance Raman spectra were obtained under the same experimental conditions as those adopted for the measurements of oxygen consumption and difference absorption spectra. The photoreduction was more effective upon irradiation at shorter wavelengths and was irreversible under anaerobic conditions. However, upon aeration into the cell, the original oxidized form was restored. It was found that aerobic laser irradiation produces a photo steady state of the catalytic dioxygen reduction and that the Raman scattering from this photo steady state probes cytochrome a2+ and cytochrome a3(3)+ separately upon excitations at 441.6 and 406.7 nm, respectively. The enzyme was apparently protected from the photoreduction in the spinning cell with the spinning speed between 1 and 1500 rpm. These results were explained satisfactorily with the reported rate constant for the electron transfer from cytochrome a to cytochrome a3 (0.58 s-1) and a comparable photoreduction rate of cytochrome a. The anaerobic photoreduction did give Raman lines at 1666 and 214 cm-1, which are characteristic of the ferrous high-spin cytochrome a3(2)+, but they were absent under aerobic photoreduction. The formyl CH = O stretching mode of the a3 heme was observed at 1671 cm-1 for a2+a3(2)+CO but at 1664 cm-1 for a2+a3(2)+CN-, indicating that the CH = O stretching frequency reflects the pi back-donation to the axial ligand similar to the oxidation state marker line (v4).  相似文献   

17.
The photoactivated metastable triplate states of the porphyrin (free-base, i.e., metal-free) zinc and tin derivatives of horse cytochrome c were investigated using electron paramagnetic resonance. Zero-field splitting parameters, line shape, and Jahn-Teller distortion in the temperature range 3.8-150 K are discussed in terms of porphyrin-protein interactions. The zero-field splitting parameters D for the free-base, Zn and Sn derivatives are 465 x 10(-4), 342 x 10(-4) and 353 x 10(-4) cm-1, respectively, and are temperature invariant over the temperature ranges studied. AN E value at 4 K of 73 x 10(-4) cm-1 was obtained for Zn cytochrome c, larger than any previously found for Zn porphyrins derivatives of hemeproteins, showing that the heme site of cytochrome c imposes an asymmetric field. Though the E value for Zn cytochrome c is large, the geometry of the site appears quite constrained, as indicated by a spectral line shape showing a single species. Intersystem crossing occurred predominantly to the T2 > zero-field spin sublevel. EPR line shape changes with respect to temperature of Zn cyt c are interpreted in terms of vibronic coupling, and a maximum Jahn-Teller crystal-field splitting of approximately 180 cm-1 is obtained. Sn cytochrome c in comparison with the Zn protein exhibits a photoactivated triplet line shape that is less well resolved in the X-Y region. The magnitude of E value is approximately 60 x 10(-4) cm-1 at 4 K; its value rapidly tends toward zero with increasing temperature, from which a value for the Jahn-Teller crystal-field splitting of > or = 40 cm-1 is estimated. In contrast to those for the metal cytochromes, the magnitude of E value for the free-base derivative was essentially zero at all temperatures studied. This finding is discussed as a consequence of an excited-state tautomerization process that occurs even at 4 K.  相似文献   

18.
The BLUF (sensor of blue light using FAD) domain is a blue light receptor possessing a flavin molecule as an active cofactor. A conserved Tyr residue located adjacent to flavin has been proposed to be a key amino acid in the mechanism of the photoreaction of the BLUF domain. We have studied the structure of this key Tyr residue and the relevance to the photoreaction in the BLUF protein of the cyanobacterium Thermosynechococcus elongatus, TePixD, by means of Fourier transform infrared (FTIR) difference spectroscopy and density functional theory (DFT) calculations. Light-induced FTIR difference spectra of unlabeled and [4-13C]Tyr-labeled TePixD in H2O and D2O revealed that the nuCO/deltaCOH vibrations of a photosensitive Tyr side chain are located at 1265/1242 cm-1 in the dark-adapted state and at 1273/1235 cm-1 in the light-induced signaling state. These signals were assigned to the vibrations of Tyr8 near flavin from the absence of the effect of [4-13C]Tyr labeling in the Tyr8Phe mutant. DFT calculations of H-bonded complexes of p-cresol with amides as models of the Tyr8-Gln50 interactions showed that Tyr8 acts as a H-bond donor to the Gln50 in both of the dark and light states. Further DFT analysis suggested that this H-bond is strengthened upon photoconversion to the light state accompanied with a change in the H-bond angle. The change in the H-bond structure of Tyr8 is coupled to the flavin photoreaction probably through the Tyr8-Gln50-flavin H-bond network, suggesting a significant role of Tyr8 in the photoreaction mechanism of TePixD.  相似文献   

19.
The redox dependent changes in the cytochrome c oxidase from bovine heart were studied with a combined electrochemical and FT-IR spectroscopic approach. A direct comparison to the electrochemically induced FT-IR difference spectra of the cytochrome c oxidase from Paracoccus denitrificans reveals differences in the structure and intensity of vibrational modes. These differences are partially attributed to interactions of subunits influencing the heme and protein modes. In the spectral regions characteristic for v(C=O) and v(COO-)s/as modes of protonated and deprotonated Asp and Glu residues, additional signals at 1736, 1602 and 1588 cm-1 are observed. On this basis, the possible involvement of Asp-51, a residue specifically conserved in mammalian oxidase and previously proposed to show redox depended conformational changes in the respective X-ray structures, is critically discussed.  相似文献   

20.
Cytochrome c oxidase from Paracoccus denitrificans was studied with a combined electrochemical and ultraviolet/visible/infrared (UV/vis/IR) spectroscopic approach. Global fit analysis of oxidative electrochemical redox titrations was used to separate the spectral contributions coupled to heme a and a3 redox transitions, respectively. Simultaneous adjustment of the midpoint potentials and of the amplitudes for a user-defined number of redox components (here heme a and a3) at all wavelengths in the UV/vis (900-400 nm) and at all wavenumbers in the infrared (1800-1250 cm-1) yielded difference spectra for the number of redox potentials selected. With an assumption of two redox components, two spectra for the redox potential at -0.03 +/- 0.01 V and 0.22 +/- 0.04 V (quoted vs Ag/AgCl) were obtained. The method used here allows the separation of the heme signals from the electrochemically induced visible difference spectra of native cytochrome c oxidase without the addition of any inhibitors. The separated heme a and a3 UV/vis difference spectra essentially correspond to spectra obtained for high/low-spin and 5/6-coordinated heme a/a3 model compounds presented by Babcock [(1988) in Biological Applications of Resonance Raman Spectroscopy (Spiro, T., Ed.) Wiley and Sons, New York]. Single-component Fourier transform infrared (FTIR) difference spectra were calculated for both hemes on the basis of these fits, thus revealing contributions from the reorganization of the polypeptide backbone, from the hemes, and from single amino acids upon electron transfer of the cofactors (heme a/a3, CuA, and CuB), as well from coupled processes such as proton transfer. A tentative assignment of heme vibrational modes is presented and the assignment of the signals to the reorganization of the polypeptide backbone and to perturbations of single amino acids, in particular Asp, Glu, Arg, or Tyr, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号