首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study provides a critical examination of protein labeling with Cy3, Cy5, and other Cy dyes. Two alternate situations were tested. (i) Antibodies were covalently labeled with Cy dye succinimidyl ester at various fluorophore/protein ratios and the fluorescence of the labeled antibodies was compared to that of free Cy dye. (ii) Fluorescent biotin derivatives were synthesized by derivatizing ethylenediamine with one biotin and one Cy3 (or Cy5) residue. The fluorescence properties of these biotin-Cy dye conjugates were examined at all ligand/(strept)avidin ratios (0 相似文献   

2.

Background  

Environmental ozone can rapidly degrade cyanine 5 (Cy5), a fluorescent dye commonly used in microarray gene expression studies. Cyanine 3 (Cy3) is much less affected by atmospheric ozone. Degradation of the Cy5 signal relative to the Cy3 signal in 2-color microarrays will adversely reduce the Cy5/Cy3 ratio resulting in unreliable microarray data.  相似文献   

3.
We report here an approach for simultaneous fluorescence imaging and electrical recording of single ion channels in planar bilayer membranes. As a test case, fluorescently labeled (Cy3 and Cy5) gramicidin derivatives were imaged at the single-molecule level using far-field illumination and cooled CCD camera detection. Gramicidin monomers were observed to diffuse in the plane of the membrane with a diffusion coefficient of 3.3 x 10(-8) cm(2)s(-1). Simultaneous electrical recording detected gramicidin homodimer (Cy3/Cy3, Cy5/Cy5) and heterodimer (Cy3/Cy5) channels. Heterodimer formation was observed optically by the appearance of a fluorescence resonance energy transfer (FRET) signal (irradiation of Cy3, detection of Cy5). The number of FRET signals was significantly smaller than the number of Cy3 signals (Cy3 monomers plus Cy3 homodimers) as expected. The number of FRET signals increased with increasing channel activity. In numerous cases the appearance of a FRET signal was observed to correlate with a channel opening event detected electrically. The heterodimers also diffused in the plane of the membrane with a diffusion coefficient of 3.0 x 10(-8) cm(2)s(-1). These experiments demonstrate the feasibility of simultaneous optical and electrical detection of structural changes in single ion channels as well as suggesting strategies for improving the reliability of such measurements.  相似文献   

4.
Cyst expansion in polycystic kidney disease (PKD) results in localized hypoxia in the kidney that may activate hypoxia-inducible factor-1α (HIF-1α). HIF-1α and autophagy, a form of programmed cell repair, are induced by hypoxia. The purposes were to determine HIF-1α expression and autophagy in rat and mouse models of PKD. HIF-1α was detected by electrochemiluminescence. Autophagy was visualized by electron microscopy (EM). LC3 and beclin-1, markers of autophagy, were detected by immunoblotting. Eight-week-old male heterozygous (Cy/+) and 4-wk-old homozygous (Cy/Cy) Han:SPRD rats, 4-wk-old cpk mice, and 112-day-old Pkd2WS25/- mice with a mutation in the Pkd2 gene were studied. HIF-1α was significantly increased in massive Cy/Cy and cpk kidneys and not smaller Cy/+ and Pkd2WS25/- kidneys. On EM, features of autophagy were seen in wild-type (+/+), Cy/+, and cpk kidneys: autophagosomes, mitophagy, and autolysosomes. Specifically, autophagosomes were found on EM in the tubular cells lining the cysts in cpk mice. The increase in LC3-II, a marker of autophagosome production and beclin, a regulator of autophagy, in Cy/Cy and cpk kidneys, followed the same pattern of increase as HIF-1α. To determine the role of HIF-1α in cyst formation and/or growth, Cy/+ rats, Cy/Cy rats, and cpk mice were treated with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). 2ME2 had no significant effect on kidney volume or cyst volume density. In summary, HIF-1α is highly expressed in the late stages of PKD and is associated with an increase in LC3-II and beclin-1. The first demonstration of autophagosomes in PKD kidneys is reported. Inhibition of HIF-1α did not have a therapeutic effect.  相似文献   

5.
In this study, we synthesized a novel Cy5.5-labeled dimeric NGR peptide (Cy5.5-NGR2) via bioorthogonal click chemistry, and evaluated the utility of Cy5.5-NGR2 for near-infrared fluorescence imaging of CD13 receptor expression in vivo. The dimeric NGR peptide (NGR2) was conjugated with an alkyne-containing PEG unit followed by mixing with an azide-terminated Cy5.5 fluorophore (Cy5.5-N3) to afford Cy5.5-NGR2. The probe was subject to in vitro and in vivo evaluations. The bioorthogonal click chemistry provided a rapid conjugation of the alkyne-containing NGR2 with Cy5.5-N3 in a quantitative yield within 15 min. The laser confocal microscopy revealed that binding of Cy5.5-NGR2 to CD13 receptor is target-specific as demonstrated in CD13-positive HT-1080 cells, CD13-negative MCF-7 cells, and a blocking study in HT-1080 cells. For in vivo optical imaging, Cy5.5-NGR2 exhibited rapid HT-1080 tumor targeting at 0.5 h postinjection (pi), and highest tumor-to-background contrast at 2 h pi. The CD13-specific tumor accumulation of Cy5.5-NGR2 was accomplished by a blocking study with unlabeled NGR peptide in HT-1080 tumor bearing mice. The tumor-to-muscle ratio of Cy5.5-NGR2 at 2 h pi reached 2.65 ± 0.13 in the non-blocking group vs. 1.05 ± 0.06 in the blocking group. The results from ex vivo imaging were consistent with the in vivo findings. We concluded that Cy5.5-NGR2 constructed by bioorthogonal click chemistry is a promising molecular probe, not only allowing the NIR optical imaging of CD13 overexpressed tumors, but also having the potential to facilitate noninvasive monitoring of CD13-targeted tumor therapy.  相似文献   

6.
Four cyanidin-based anthocyanins (1–4) were isolated from the red onion, Allium cepa L. Pigments 1 and 3 were identified as cyanidin 3-glucoside (Cy 3-Glc) and 3-malonylglucoside (Cy 3-MaGlc), respectively, by cochromatography with standard pigments. Anthocyanins 2 and 4 were respectively determined as cyanidin 3-laminaribioside (Cy 3-Lam) and 3-malonyllaminaribioside (Cy 3-MaLam), a new anthocyanin, mainly by NMR tech-niques. Malonylated anthocyanins 3 and 4 were found for the first time in red onions.  相似文献   

7.
Obesity is a serious health problem and a major risk factor for the onset of several diseases such as heart disease, diabetes, stroke and cancer. The conversion of white adipocytes to brown-like adipocytes, also called beige or brite adipocytes, by pharmacological and dietary compounds has gained attention as an effective treatment for obesity. Cyanidin-3-glucoside (Cy3G), a polyphenolic compound contained in black soybean, blueberry and grape, has several antiobesity effects. However, there are no reports on the role of Cy3G in the induction of differentiation of preadipocytes to beige adipocytes and corresponding phenotypes. Here, the formation of beige adipocyte phenotypes following treatment with Cy3G was evaluated using 3T3-L1 adipocytes. Cy3G induced phenotypic changes to white adipocytes, such as increased multilocular lipid droplets and mitochondrial content. Additionally, the expression of mitochondrial genes (TFAM, SOD2, UCP-1 and UCP-2), UCP-1 protein and beige adipocyte markers (CITED1 and TBX1) in 3T3-L1 adipocytes was increased by Cy3G. Furthermore, Cy3G promoted preadipocyte differentiation by up-regulating of C/EBPβ through the elevation of the intracellular cAMP levels. These results indicated that Cy3G elevates the intracellular cAMP levels, which induces beige adipocyte phenotypes. This is the first report on the effect of Cy3G on induction of differentiation of preadipocytes into beige adipocyte phenotypes.  相似文献   

8.
Intramolecular fluorescence quenching of cyanine dyes was investigated using a model hairpin oligonucleotide decoy encoding a NF-kappaB p50 subunit binding site. Two types of hairpin oligonucleotides were synthesized: (1) 5'-(6-aminohexyl)- and 3'-(3-aminopropyl)-linked (I); (2) 5'-(6-aminohexyl)- and 3'-[3-(3-hydroxypropyldithio)propyl]-linked (II). Oligonucleotide I was covalently modified using monofunctional either Cy3- or Cy5.5-N-hydroxysuccinimide esters. Using reverse-phase HPLC, mono-and dicyanineamide derivatives of I were isolated. Mono-Cy3-modified derivatives of I, but not the mono-Cy5.5-modified derivatives, showed a 2-fold higher Cy3 fluorescence intensity compared to the free dye. There was no detectable difference in fluorescence between the di-Cy3 derivative of I and the free dye at the same concentration. However, there was a 4-fold quenching of fluorescence in the case of the di-Cy5.5 derivative of the same hairpin oligonucleotide. The quenching of Cy5.5 fluorescence could not be explained by the interaction of Cy5.5 with nucleotide bases as demonstrated by incubating free Cy5.5 dye with oligonuclotides. The quenching effect was further investigated using an oligonucleotide bearing a cleavable 3'-amino-terminated linker bearing an S-S bond (III). After modification of the 5'- and 3'-end of oligonucleotide III with a Cy5.5 monofunctional hydroxysuccinimide ester, a 70-75% quenching of fluorescence was observed. Fluorescence was 100% dequenched after the reduction of S-S bond. The obtained result unequivocally demonstrates that the formation of intramolecular Cy5.5 dimers is the dominant mechanism of fluorescence quenching in symmetric dye-dye hairpin decoy beacons.  相似文献   

9.
Cy3B is an extremely bright and stable fluorescent dye, which is only available for coupling to nucleic acids post-synthetically. This severely limits its use in the fields of genomics, biology and nanotechnology. We have optimized the synthesis of Cy3B, and for the first time produced a diverse range of Cy3B monomers for use in solid-phase oligonucleotide synthesis. This molecular toolkit includes phosphoramidite monomers with Cy3B linked to deoxyribose, to the 5-position of thymine, and to a hexynyl linker, in addition to an oligonucleotide synthesis resin in which Cy3B is linked to deoxyribose. These monomers have been used to incorporate single and multiple Cy3B units into oligonucleotides internally and at both termini. Cy3B Taqman probes, Scorpions and HyBeacons have been synthesized and used successfully in mutation detection, and a dual Cy3B Molecular Beacon was synthesized and found to be superior to the corresponding Cy3B/DABCYL Beacon. Attachment of Cy3, Cy3B and Cy5 to the 5-position of thymidine by an ethynyl linker enabled the synthesis of an oligonucleotide FRET system. The rigid linker between the dye and nucleobase minimizes dye-dye and dye-DNA interactions and reduces fluorescence quenching. These reagents open up new future applications of Cy3B, including more sensitive single-molecule and cell-imaging studies.  相似文献   

10.
Rabbit psoas muscle myofibrils, in the presence of the fluorescent nucleotide analog 2'(3')-O-[N-[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5' triphosphate (Cy3-EDA-ATP), showed selective fluorescence staining of the A-band with a reduced fluorescence at the M-line. Addition of Cy3-EDA-ATP to a myofibril in the presence of Ca2+ caused auxotonic shortening against a compliant glass microneedle. These results indicate that Cy3-EDA-ATP is a substrate for myosin in the myofibril system. The kinetics of nucleotide release from a single myofibril, held isometrically between two needles, were measured by the displacement of prebound Cy3-EDA-ATP on flash photolysis of caged ATP. The A-band fluorescence of the myofibril decayed exponentially with a rate constant of 0.3 s(-1) at 8 degrees C, an order of magnitude faster than that for isolated thick filaments in the absence of actin. When a myofibril was imposed to shorten with a constant velocity by a piezoelectric actuator, the nucleotide displacement rate constant initially increased to 0.7 s(-1) with increasing shortening velocity and then declined with a further increase in shortening velocity. These results demonstrate that the displacement rates of Cy3-EDA-nucleotides bound to the cross-bridges in the contracting myofibril reflect a process that shows strain dependence.  相似文献   

11.
DNA microarray analyses commonly use two spectrally distinct fluorescent labels to simultaneously compare different mRNA pools. Signal correlation bias currently limits accepted resolution to twofold changes in gene expression. This bias was investigated by (i) examining fluorescence and absorption spectra and changes in relative fluorescence of DNAs labeled with the Cy3, Cy5, Alexa Fluor 555, and Alexa Fluor 647 dyes and by (ii) using homotypic hybridization assays to compare the Cy dye pair with the Alexa Fluor dye pair. Cy3 or Cy5 dye-labeled DNA exhibited reduced fluorescence and absorption anomalies that were eliminated by nuclease treatment, consistent with fluorescence quenching that arises from dye-dye or dye-DNA-dye interactions. Alexa Fluor 555 and Alexa Fluor 647 dye-labeled DNA exhibited little or no such anomalies. In microarray hybridization, the Alexa Fluor dye pair provided higher signal correlation coefficients (R2) than did the Cy dye pair; at the 95% prediction level, a 1.3-fold change in gene expression was significant using the Alexa Fluor dye pair. Lowered signal correlation of the Cy dye pair was associated with high variance in Cy5 dye signals. These results indicate that fluorescence quenching may be a source of signal bias associated with the Cy dye pair.  相似文献   

12.
The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase.  相似文献   

13.
Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Dye-binding aptamers are promising tools for real-time detection of not only DNA or RNA sequences but also proteins of interest both in vitro and in vivo. In this study, we aimed to isolate an RNA aptamer to Cy3, a widely used, membrane-permeant, and nontoxic fluorescent cyanine dye. Extensive selection of affinity RNA molecules to Cy3 yielded a unique sequence aptamer named Cy3_apt. The selected Cy3_apt was 83 nucleotides long and successfully shortened to 49 nucleotides long with increased affinity to Cy3 by multiple base changes. The shortest Cy3_apt is composed of two separate hairpin modules that are required for the affinity to Cy3 as monitored by the surface plasmon resonance (SPR) assay. Also, the fluorescence of Cy3 increased on binding to Cy3_apt. The two modules of Cy3_apt, when detached from each other, functioned as a binary aptamer probe. We demonstrate that the binary Cy3_apt probe is applicable to the detection of target oligonucleotides or RNA-RNA interaction by tagging with target sequences. This binary probe consists of two folded modules, referred to as a folded binary probe.  相似文献   

14.
Much attention has recently been devoted to the delimitation of species units in Cylindrocladium(Cy.). In this regard the present study focuses on the taxa within the unresolved Cy. floridanum and Cy. spathiphylli species complexes. Maximum parsimony analyses of DNA sequences of ITS, β-tubulin and histone regions of rRNA genes, and mating experiments revealed a geographically isolated species of Cylindrocladium in the Cy. spathiphylli(teleomorph:Calonectria spathiphylli) species complex.Cy. pseudospathiphylli sp. nov. (teleomorph:Ca. pseudospathiphylli sp. nov.) is described as a new phylogenetic, biological and morphological species. It is distinguished from Cy. spathiphylli by being homothallic, having smaller macroconidia, and distinct DNA sequences of β-tubulin and histone genes. Similarly, parsimony analysis of a combined data set also indicated several phylogenetic species to exist within Cy. floridanum(teleomorph:Ca. kyotensis). Based on differences in vesicle morphology and conidium dimensions, the Canadian population of Cy. floridanum, formerly known as Cy. floridanum Group 2, is described as Cy. canadense sp. nov., while a further collection from Hawaii is described as Cy. pacificum sp. nov.  相似文献   

15.
The technique of fluorescent two-dimensional (2D) difference gel electrophoresis for differential protein expression analysis has been evaluated using a model breast cancer cell system of ErbB-2 overexpression. Labeling of paired cell lysate samples with N-hydroxy succinimidyl ester-derivatives of fluorescent Cy3 and Cy5 dyes for separation on the same 2D gel enabled quantitative, sensitive, and reproducible differential expression analysis of the cell lines. SyproRuby staining was shown to be a highly sensitive and 2D difference gel electrophoresis-compatible method for post-electrophoretic visualization of proteins, which could then be picked and identified by matrix-assisted laser-desorption ionization mass spectroscopy. Indeed, from these experiments, we have identified multiple proteins that are likely to be involved in ErbB-2-mediated transformation. A triple dye labeling methodology was used to identify proteins differentially expressed in the cell system over a time course of growth factor stimulation. A Cy2-labeled pool of samples was used as a standard with all Cy3- and Cy5-labeled sample pairs to facilitate cross-gel quantitative analysis. DeCyder (Amersham Biosciences, Inc.) software was used to distinguish clear statistical differences in protein expression over time and between the cell lines.  相似文献   

16.

Background

While the static structure of the intracellular Ca2+ release channel, the ryanodine receptor type 1 (RyR1) has been determined using cryo electron microscopy, relatively little is known concerning changes in RyR1 structure that accompany channel gating. Förster resonance energy transfer (FRET) methods can resolve small changes in protein structure although FRET measurements of RyR1 are hampered by an inability to site-specifically label the protein with fluorescent probes.

Methodology/Principal Findings

A novel site-specific labeling method is presented that targets a FRET acceptor, Cy3NTA to 10-residue histidine (His) tags engineered into RyR1. Cy3NTA, comprised of the fluorescent dye Cy3, coupled to two Ni2+/nitrilotriacetic acid moieties, was synthesized and functionally tested for binding to His-tagged green fluorescent protein (GFP). GFP fluorescence emission and Cy3NTA absorbance spectra overlapped significantly, indicating that FRET could occur (Förster distance = 6.3 nm). Cy3NTA bound to His10-tagged GFP, quenching its fluorescence by 88%. GFP was then fused to the N-terminus of RyR1 and His10 tags were placed either at the N-terminus of the fused GFP or between GFP and RyR1. Cy3NTA reduced fluorescence of these fusion proteins by 75% and this quenching could be reversed by photobleaching Cy3, thus confirming GFP-RyR1 quenching via FRET. A His10 tag was then placed at amino acid position 1861 and FRET was measured from GFP located at either the N-terminus or at position 618 to Cy3NTA bound to this His tag. While minimal FRET was detected between GFP at position 1 and Cy3NTA at position 1861, 53% energy transfer was detected from GFP at position 618 to Cy3NTA at position 1861, thus indicating that these sites are in close proximity to each other.

Conclusions/Significance

These findings illustrate the potential of this site-specific labeling system for use in future FRET-based experiments to elucidate novel aspects of RyR1 structure.  相似文献   

17.
Clathrin triskelia consist of three heavy chains and three light chains (LCs). Green fluorescent protein (GFP)‐tagged LCs are widely utilized to follow the dynamics of clathrin in living cells, but whether they reflect faithfully the behavior of clathrin triskelia in cells has not been investigated yet thoroughly. As an alternative approach, we labeled purified LCs either with Alexa 488 or Cy3 dye and compared them with GFP‐tagged LC variants. Cy3‐labeled light chains (Cy3‐LCs) were microinjected into HeLa cells either directly or in association with heavy chains. Within 1–2 min the Cy3‐LC heavy chain complexes entered clathrin‐coated structures, whereas uncomplexed Cy3‐LC did not within 2 h. These findings show that no significant exchange of LCs occurs over the time–course of an endocytic cycle. To explore whether GFP‐tagged LCs behave functionally like endogenous LCs, we characterized them biochemically. Unlike wild‐type LCs, recombinant LCs with a GFP attached to either end did not efficiently inhibit clathrin assembly in vitro, whereas Cy3‐ and Alexa 488‐labeled LC behaved similar to wild‐type LCs in vitro and in vivo. Thus, fluorochromated LCs are a valuable tool for investigating the complex behavior of clathrin in living cells.  相似文献   

18.
Han:SPRD Cy is a spontaneous rat model of polycystic kidney disease (PKD) caused by a missense mutation in Pkdr1. Cystogenesis in this model is not clearly understood. In the current study, we performed global gene expression profiling in early-stage PKD cyst development in Cy/Cy kidneys and normal (+/+) kidneys at 3 and 7 days of postnatal age. Expression profiles were determined by microarray analysis, followed by validation with real-time RT-PCR. Genes were selected with over 1.5-fold expression changes compared with age-matched +/+ kidneys for canonical pathway analysis. We found nine pathways in common between 3- and 7-day Cy/Cy kidneys. Three significantly changed pathways were designated "Vitamin D Receptor (VDR)/Retinoid X Receptor (RXR) Activation," "LPS/IL-1-Mediated Inhibition of RXR Function," and "Liver X Receptor (LXR)/RXR Activation." These results suggest that RXR-mediated signaling is significantly altered in developing kidneys with mutated Pkdr1. In gene ontology analysis, the functions of these RXR-related genes were found to be involved in regulating cell proliferation and organ morphogenesis. With real-time RT-PCR analysis, the upregulation of Ptx2, Alox15b, OSP, and PCNA, major markers of cell proliferation associated with the RXR pathway, were confirmed in 3- and 7-day Cy/Cy kidneys compared with 3-day +/+ kidneys. The increased RXR protein was observed in both the nucleus and cytoplasm of cystic epithelial cells in early-stage Cy/Cy kidneys, and the RXR-positive cells were strongly positive for PCNA staining. Taken together, cell proliferation and organ morphogenesis signals transduced by RXR-mediated pathways may have important roles for cystogenesis in early-stage PKD in this Pkdr1-mutated Cy rat.  相似文献   

19.
Single nucleotide polymorphism (SNP) detection for aldehyde dehydrogenase 2 (ALDH2) gene based on DNA thermal dissociation curve analysis was successfully demonstrated using an automated system with bacterial magnetic particles (BMPs) by developing a new method for avoiding light scattering caused by nanometer-size particles when using commercially available fluorescent dyes such as FITC, Cy3, and Cy5 as labeling chromophores. Biotin-labeled PCR products in ALDH2, two allele-specific probes (Cy3-labeled detection probe for ALDH2*1 and Cy5-labeled detection probe for ALDH2*2), streptavidin-immobilized BMPs (SA-BMPs) were simultaneously mixed. The mixture was denatured at 70 degrees C for 3 min, cooled slowly to 25 degrees C, and incubated for 10 min, allowing the DNA duplex to form between Cy3- or Cy5-labeled detection probes and biotin-labeled PCR products on SA-BMPs. Then duplex DNA-BMP complex was heated to 58 degrees C, a temperature determined by dissociation curve analysis and a dissociated single-base mismatched detection probe was removed at the same temperature under precise control. Furthermore, fluorescence signal from the detection probe was liberated into the supernatant from completely matched duplex DNA-BMP complex by heating to 80 degrees C and measured. In the homozygote target DNA (ALDH2*1/*1 and ALDH2*2/*2), the fluorescence signals from single-base mismatched were decreased to background level, indicating that mismatched hybridization was efficiently removed by the washing process. In the heterozygote target DNA (ALDH2*1/*2), each fluorescence signals was at a similar level. Therefore, three genotypes of SNP in ALDH2 gene were detected using the automated detection system with BMPs.  相似文献   

20.
Today, microarray fluorescence detection is still limited because a great proportion of hybrids remain undetectable. In this paper we describe sol-gel optical multilayers (stacks of low- and high-index layers) deposited on glass slides which increase the fluorescence of DNA microarrays and favour the detection of fluorescent targets. An alternative to the expensive and time-consuming physical vapour deposition technology is proposed. It is a low-cost sol-gel coating of glass slides, each layer being made by "dipping" (alternatively in SiO2 or TiO2 solutions), "draining and drying". After the selection of the best surface layer of the substrates, the multilayer mirrors modelled for one (Cy3) or two (Cy3 and Cy5) fluorophores are spotted with a series of Yeast probes and compared to similar microarrays on standard glass slides through hybridisation experiments. The fluorescence images of the mirrors show increased signals for all the probes. The enhancement factors determined for Cy3 and for Cy3/Cy5 mirrors (10-12 and 4-5, respectively) are consistent with the initial modelling. This allows the assessment of the basal expression levels of Yeast low-expressed genes. Moreover, these substrates show a noticeable increase in sensitivity for induction/repression ratio measurements in differential gene expression experiments. So, they could be considered as promising tools for the analysis of small biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号