首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Fusicoccin induced germination in dormant and partially afterripened dormant caryopses of Avena fatua L. The rate of caryopsis germination was slower and final percentage germination lower in the highly dormant inbred line M73 at a given concentration of fusicoccin than in the dormant caryopses of line AN265. Gibberellic acid was more effective than fusicoccin in breaking dormancy in both lines. Promotion of germination of dormant caryopses by fusicoccin was inhibited by a 6-day pretreatment with (2-chloroethyl)trimethylammonium chloride.
The basal rate of proton efflux from embryos isolated from dormant and fully afterripened line AN265 caryopses was similar. Addition of fusicoccin increased the rate of proton efflux from the isolated embryos of dormant and afterripened caryopses by nearly 400%. Gibberellic acid had no effect on the rate of proton extrusion. The uptake of 86Rb+ in dormant and afterripened A. fatua embryos was similar after a 2 h uptake period. The addition of fusicoccin to the medium doubled the uptake of 86Rb4 by dormant and afterripened embryos. Gibberelleic acid had no effect on the uptake of 86Rb+ by isolated embryos from either dormant or afterripened caryopses. The experimental results indicate that gibberellic acid is more versatile in its action than fusicoccin, and gibberellic acid may facilitate dormant A. fatua caryopsis germination by stimulating mechanisms other than the direct H+ efflux and K+ uptake at the membrane level.  相似文献   

2.
Citric, succinic, fumaric, malic, pyruvic and lactic acids induced germination in two genetically pure dormant lines of Avena fatua L. The sensitivity to these acids was low immediately after harvest and increased markedly after a period of dry after-ripening. Because the acids could only overcome dormancy in partly after-ripened caryopses, the mode of their action in these caryopses differed from that of another germination promotor, ethanol, and was similar to that of the germination promoter, sodium nitrate. The mode of action of the organic acids on the partly after-ripened caryopses through lowering pH was indicated by the observation that other non-metabolic weak acids could also break dormancy while neutral pH value salt solutions of some of the tested acids were inactive. The dose-response curves of citric acid for the stimulation of germination and for oxygen uptake were similar, indicating that this organic acid may stimulate germination by promoting oxygen uptake. A time sequence study showed that citric acid stimulated oxygen uptake before the first visible signs of germination. Stimulation of germination and oxygen uptake over a range of pH values showed that those values of pH which stimulated germination also stimulated oxygen uptake, indicating that the ability to stimulate oxygen uptake was not confined to organic acids. The stimulation of both germination and oxygen uptake by citric acid was not inhibited by salicylhydroxamic acid, an inhibitor of alternative respiration, therefore stimulation of both germination and oxygen uptake by citric acid does not require the operation of the alternative pathway of respiration. The function of weak acids as promoters of oxygen uptake is discussed with reference to the breakage of dormancy in partly after-ripened caryopses and the involvement of various respiratory pathways is indicated.  相似文献   

3.
The dormancy-breaking effect of several known germination promoters was studied in 9 genetically pure lines of Avena fatua L. during a period of controlled after-ripening. Changes in the germination response show at least two dormancy states in the caryopses of these lines. The first state is overcome by a short period of after-ripening and is insensitive to nitrate and azide, while the second state is more persistent and is sensitive to nitrate and azide. Both states are sensitive to gibberellic acid (OA,) and ethanol. In the most dormant lines a third ethanol-insensitive dormancy state is present. The duration of both major dormancy states was related to several environmental factors influencing plant growth and seed storage. Duration was increased in caryopses produced from plants matured under low temperatures (15°C) and decreased in caryopses produced from plants matured under high temperatures (25°C). Duration was increased in caryopses after-ripened under low temperatures (4°C) and decreased in caryopses after-ripened under high temperatures (45°C). Dehulling the seeds prior to after-ripening reduced the duration of both major dormancy states. The multiple state dormancy system and its environmentally induced plasticity are discussed with reference to previous explanations of the dormancy mechanism in wild oats.  相似文献   

4.
The induction of secondary dormancy in caryopses of genetically pure dormant lines of Avena fatua L. is described. Seeds harvested from mature plants were after-ripened under controlled conditions (26°C, 25% relative humidity) until fully non-dormant. Secondary dormancy was then induced into these caryopses by incubation on moist filter papers in an aspirated nitrogen atmosphere at 20°C over periods from 3 h to 14 days. These caryopses failed to germinate when returned to an aerobic environment. The dose-response curves for gibberellic acid, sodium azide, sodium nitrite, sodium nitrate and ethanol show that all of these treatments can overcome the induced secondary dormancy. Drying increased the sensitivity of secondary dormant caryopses to these treatments. These treatments overcame secondary dormancy at all times, indicating the presence of only one of the two known blocks to germination that exist during primary dormancy. Similarities between primary and secondary dormancy in A. fatua are discussed.  相似文献   

5.
Sodium nitrate and nitrite (50–100 m M ) induced germination in three out of four genetically pure dormant lines of Avena fatua L. The sensitivity to these treatments was low immediately ater harvest and increased markedly after six months of dry after-ripening. The observation that a fourth dormant line failed to respond suggests at least two metabolic blocks may be involved in expression of dormancy. An inhibitor of gibberellin biosynthesis, 2-chloroethyl trimethylammonium chloride, completely inhibited the dormancy-breaking effect by nitrate and nitrite, indicating a requirement for gibberellin biosynthesis. Among reduced nitrogenous compounds, ammonium chloride and urea failed to break dormancy in all partly after-ripened lines, suggesting that nitrate and nitrite may induce germination through their ability to act as electron acceptors. The sensitivity to all nitrogenous compounds tested increased with the length of after-ripening indicating that the depth of the second dormancy block amy decrease with the time of after-ripening. Other reduced nitrogenous compounds, thiourea and hydroxylamine hydrochloride, promoted some germination in the least dormant, partially after-ripened lines. The function of these compounds as electron acceptors and their similarity in activity to the cytochrome oxidase inhibitor, sodium azide, is discussed with reference to dormancy and the possible involvement of the alternative pathway of respiration.  相似文献   

6.
Induction of vivipary in Avena fatua   总被引:1,自引:0,他引:1  
An investigation was conducted under controlled conditions to determine whether treatments designed to maximize the availability of water during seed development could induce viviparous germination in wild oats ( Avena fatua L.). Panicles of three genetic lines, which differed in their degree of dormancy, were kept in darkness at ca 100% RH and 20±1°C and were either supplied with water through the cut end of the rachis or left attached to the plant which was exposed to light. In the non-dormant line, germination of both primary and secondary caryopses on excised panicles increased with their stage of development when treated, i.e., 0, 5 and 10 days after anthesis. Germination of primary caryopses varied between 70 and 80% and was similar on both isolated and attached panicles treated at 10 and 5 days after anthesis, respectively. The percentage germination was considerably lower in all treatments of the two dormant lines and was inversely related to the genetically determined difference in their degree of dormancy. In these dormant lines germination was significantly lower on the intact plant than on the detached panicles. Water potential measurements suggested that this difference may be due partly to the transpiration-induced negative ψxyin the stem which may contribute to the inhibition of embryo growth and thus to the prevention of viparous germination.  相似文献   

7.
Effects of SO2 on Photosynthesis and Nitrogen Fixation   总被引:6,自引:0,他引:6  
Spikelets of Themeda triandra are dormant when mature and require an after-ripening period in dry storage of approximately 12 months before full germination potential is realized. Successful germination of spikelets entails the splitting of the tough upper glumes by radicles. Dormany appears to result from a combination of embryo dormancy and mechanically resistant glumes. Glume removal from dormant spikelets increases germination while glume removal plus gibberellic acid increases germination even more. During the after-ripening period, the growth potential of spikelets and caryopses increases as measured by their ability to germinate in the presence of the osmoticum polyethylene glycol 6000. The inhibition of germination by decreasing osmotic potential of the germination medium significantly interacts with the promotion caused by gibberellic acid indicating that both factors affect germination by altering the growth potential of the embryos. The increase in growth potential during after-ripening is probably related to the synthesis of gibberellin-like substances. It is hypothesized that dormancy breaking during after-ripening occurs because the growth potential of embryos increases and this consequently increases the ability of radicles to split the upper glumes during germination.  相似文献   

8.
In experiments conducted under controlled conditions. KNO3 (50 or 100 m M ) promoted germination of a dormant strain (AN 474) of Avena fatua when either one or two holes were pierced in the lower (adaxial) surface of the caryopsis in contact with the nitrate solution. Germination was increased by increasing either the KNO3 concentration or the number of holes in the seed coat. The germination response induced by the application of water to a hole pierced in the upper surface of the caryopsis was. increased by pre-treatment of the intact caryopsis with KNO3. Treatment with either 50 or 100 m M KNO3 caused a transient reduction in embryo water content of intact cary-opses, but increased the nitrate and amino- N content of pierced caryopses prior to germination. Supplying a 100 m M solution of KNO3 to pierced caryopses reduced the total water potential and osmotic potential of the embryo, and increased its pressure potential by the same amount as an equimolar solution of KC1; however, while both treatments promoted germination, the KNO3 induced more rapid germination than the KCI. Both treatments also increased the K+ content of the embryo, the KNO3 again having the greater effect. These results are consistent with the hypothesis, based on our previous investigations, that KNO3 promotes germination of dormant caryopses by accumulating in the embryo where it acts osmotically to increase water uptake. It is also postulated, that, in contrast to KCI, KNG3 may combine an osmotic effect on water uptake with a nutritional effect on protein synthesis.  相似文献   

9.
Secondary dormancy in Avena fatua: Effect of temperature and after-ripening   总被引:1,自引:0,他引:1  
To evaluate the effect of after-ripening on secondary dormancy induction in pure genetic lines of Avena fatua L., seed samples were periodically removed from standard conditions of storage and the caryopses then subjected to anoxia. Anoxia did not induce secondary dormancy in SH430, a line characterized by no primary dormancy at harvest maturity; secondary dormancy was induced in caryopses of other lines that had been after-ripened to over-come primary dormancy ranging in duration from a few days (CS40, CS166) to several months (AN51, AN127). Germination response to low GA3 concentrations indicated that secondary dormancy in CS40 and CS166 was less intense than in AN51 and AN127. The longer the period of dry after-ripening prior to anoxia treatment, the lower the intensity of secondary dormancy induced. After a period of dry after-ripening, which was characteristic for each line, anoxia became an ineffective dormancy-inducing treatment. Caryopses selected for their response to dormancy induction by anoxia were subjected to temperatures from 5 to 35°C to investigate the effect of low (5 to 18°C) and high (20 to 35°C) temperatures on both thermo- and secondary dormancy induction. SH430 was not responsive to any treatment, while CS40, CS166 and AN51 were induced into a thermo-dormancy at temperatures above 20°C and CS166 and AN51 were induced into secondary dormancy by anoxia at temperatures from 5 to 35°C. The effect of anoxia on secondary dormancy induction in a range of pure genetic lines is discussed with reference to primary dormancy, after-ripening and temperature.  相似文献   

10.
Dormancy of freshly harvested barley ( Hordeum vulgare L. cv. Sonja) caryopses results mainly from glumellae which fix oxygen by polyphenol oxidase (EC 1.14.18.1)-mediated oxidation of phenolic compounds present in high amounts. The breaking of dormancy during dry storage is not due to qualitative or quantitative modifications of the phenols or polyphenol oxidases. Glumellae of dormant caryopses start to take up oxygen at the beginning of inbibition, whereas those of non-dormant caryopses start to take up oxygen only after about 10 h. That delay should allow germination.  相似文献   

11.
Abstract. The germination behaviour of two Petunia hybrida lines. M30 and Th7, and their reciprocal hybrids was studied. Two sets of experimental conditions appeared helped to distinguish between dormant and non-dormant parental lines: (1) 25 and 35 °C in the dark, in the latter case after 2 months of dry storage at 20 °C; (2) 35 and 40 °C in the light. Photosensitivity was tested in the first case and sensitivity to GA3 in the second case. The predominance of paternal control over dormancy was evident. A maternal or tegumentary control of photosensitivity and of sensitivity to GA3 was also shown. Transferring the seeds, originally imbibed in conditions expressing primary dormancy, to conditions which previously supported their germination, allowed us to show that secondary dormancy could be easily induced when a deeper primary dormancy had already developed in the seeds.  相似文献   

12.
Light scattering techniques provide a non-destructive probe into structural aspects concerning the dormancy, heat resistance and germination of bacterial spores. Quasi-elastic light scattering techniques are applied to a study of the diffusion and scaling properties of dormant and germinating Bacillus megaterium spores (strain KM). A translational coefficient of (5.01 ± 0.10) × 10-9 cm2/s is obtained for the dormant spore, with little apparent change during the early stages of germination. Dormant and germinated spores, however, give different scaling characteristics. The significance of these observations in terms of theories concerning the dormancy and heat resistance of spores is discussed.  相似文献   

13.
Nonstructural carbohydrates in dormant and afterripened wild oat caryopses   总被引:1,自引:0,他引:1  
Nonstructural carbohydrates were determined in both embryo and endosperm of dormant (nongerminating) and afterripened (germinating) intact caryopses of wild oat ( Avena fatua L.). No changes in endosperm starch or soluble sugar were observed at the onset of germination (18 h). No changes in glucose, fructose, sucrose or starch within dormant or afterripened embryos correlated with onset of visual germination. In afterripened embryos, depletion of raffinose (18 h), stachyose (18 h) and galactose (24 h) was correlated with germination. In contrast, raffinose-family oligosaccharide levels in dormant embryos remained constant for 7 days following imbibition. Germination of isolated dormant embryos on 88 m M galactose-containing media was accompanied by decreased endogenous levels of raffinose and stachyose. Isolated embryos from dormant caryopses incorporated 14C from 14C-fructose into both raffinose and stachyose during 24 h of imbibition. In contrast, no 14C incorporation into stachyose was observed in embryos from afterripened caryopses. No 14C incorporation into raffinose was observed at 18 and 24 h. When in vitro activities of α galactosidase were measured, no temporal differences between dormant or afterripened caryopses were detected in either embryo or endosperm tissue. Although the mechanism associated with differences in utilization of raffinose and stachyose is yet unidentified, alterations in raffinose-family oligosaccharide metabolism in the embryo appear to be a unique prerequisite for afterripening-induced germination.  相似文献   

14.
On the presence of calmodulin-like protein in mycobacteria   总被引:1,自引:0,他引:1  
Abstract Endogenous elemental sulfur (S0) has been studied in dormant spores and in spores in the early stages of germination, of Phomopsis viticola . S0 was measured by high-pressure liquid chromatography (HPLC). The rapid and almost total disappearance of endogenous S0 during the early stages of spore germination was directly related to a sharp increase of the respiratory activity and the ATP concentration. This was followed by the synthesis of DNA, RNA, proteins and lipids. Respiratory activity, S0 reduction and germination were inhibited in high concentrations of spores. Endogenous S0 disappearance, due to its reduction at the level of the mitochondrial respiratory chain with hydrogen sulfide production, may play a key role in the breaking of dormancy and the induction of germination in spores of P. viticola .  相似文献   

15.
Seed dormancy controls the start of a plant's life cycle by preventing germination of a viable seed in an unfavorable season. Freshly harvested seeds usually show a high level of dormancy, which is gradually released during dry storage (after-ripening). Abscisic acid (ABA) has been identified as an essential factor for the induction of dormancy, whereas gibberellins (GAs) are required for germination. The molecular mechanisms controlling seed dormancy are not well understood. DELAY OF GERMINATION1 (DOG1) was recently identified as a major regulator of dormancy in Arabidopsis thaliana. Here, we show that the DOG1 protein accumulates during seed maturation and remains stable throughout seed storage and imbibition. The levels of DOG1 protein in freshly harvested seeds highly correlate with dormancy. The DOG1 protein becomes modified during after-ripening, and its levels in stored seeds do not correlate with germination potential. Although ABA levels in dog1 mutants are reduced and GA levels enhanced, we show that DOG1 does not regulate dormancy primarily via changes in hormone levels. We propose that DOG1 protein abundance in freshly harvested seeds acts as a timer for seed dormancy release, which functions largely independent from ABA.  相似文献   

16.
Seed dormancy is an important trait in wheat (Trticum aestivum L.) and it can be released by germination-stimulating treatments such as after-ripening. Previously, we identified proteins specifically associated with after-ripening mediated developmental switches of wheat seeds from the state of dormancy to germination. Here, we report seed proteins that exhibited imbibition induced co-regulation in both dormant and after-ripened seeds of wheat, suggesting that the expression of these specific proteins/protein isoforms is not associated with the maintenance or release of seed dormancy in wheat.  相似文献   

17.
White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare 'Betzes'). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8'OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8'OH1 in dormancy release. Reduced HvABA8'OH1 expression in transgenic HvABA8'OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.  相似文献   

18.
Adkins, S. W., Symons, S. J. and Simpson, G. M. 1988. The physiological basis of seed dormancy in Avena fatua . VIII. Action of malonic acid - Physiol. Plant, 72: 477–482.
A low concentration of malonic acid (50 m M ) induced germination in four genetically pure dormant lines of Avena fatua L. Sensitivity to this treatment was poor immediately after harvest but increased markedly during after-ripening, indicating that the mode of action of malonic acid (50 m M ) was similar to that of another organic acid, citric acid. Over the concentration range (10–50 m M ) where malonic acid promoted germination, oxygen uptake was also stimulated, and this was before the first visible signs of germination. At higher concentrations (100–300 m M ) where there was no promotion of germination, malonic acid strongly inhibited oxygen uptake. These results show that malonic acid has a dual effect on oxygen uptake and subsequent germination. Low concentrations (10–50 m M ) act by stimulating the Krebs cycle and germination through an acidification reaction like citric acid, and high concentrations (100–300 m M ) act by inhibiting germination through enzymatic restraint of the Krebs cycle.
The stimulation of both oxygen uptake and germination by three established germination promoters (sodium nitrate, citric acid and ethanol) was inhibited by a high concentration of malonic acid (200 m M ) but unaffected by a low concentration (50 m M ). These results show that oxygen uptake, and hence the activity of the Krebs cycle, are important processes involved in the dormancy breaking mechanism of these three promotors.  相似文献   

19.
Based on physiological and molecular differences associatedwith the germination of after-ripened and dormant caryopsesand excised embryos, it has been hypothesized that various methodsof after-ripening are the only treatments that facilitate thetransition of dormant wild oat embryos to a non-dormant state.To further investigate this hypothesis, analytical methods wereused to evaluate physical and temporal changes associated withgermination and subsequent growth of after-ripened and dormantexcised embryos (AR-embryos and D-embryos, respectively) inducedto germinate with fructose (Fru) and/or gibberellic acid (GA).While chemical treatments of Fru, GA, and Fru+GA have littleeffect on the germination and short-term growth of AR-embryos,they do induce germination of D-embryos. Growth following germinationof D-embryos varied according to treatment with the combinationof Fru+GA inducing the greatest growth over the duration ofthe experiment. Even considering differences in the time tocomplete germination, growth of D-embryos was not comparablewith that of AR-embryos. This provides physical evidence thatchemical treatments induce germination without fulfilling therequirements for normal after-ripening-enhanced germination/growth,and indicates that fructose and/or gibberellic acid do not removethe dormancy-block or rate limiting step in the same manneras after-ripening. Avena fatua ; after-ripening; dormancy; fructose; germination; gibberellic acid; wild oats  相似文献   

20.
The mechanisms controlling seed dormancy maintenance and release are not understood. To characterize the molecular events accompanying dormancy release, two-dimensional gel electrophoresis was used to monitor changes in soluble proteins and in vitro translation products of embryonic mRNA populations during imbibition of dormant and nondormant (after-ripened) Avena fatua L. caryopses. No differences were observed between in vitro translation products of mRNA extracted from dry dormant and nondormant embryos. However, the expression patterns of several imbibition- and germination-associated mRNAs were temporally modulated during the first 24 h of imbibition. Two dormancy-associated mRNAs, represented by polypeptides D1 and D2, were differentially overexpressed in dormant embryos after 3 h of imbibition. mRNA levels for D1 and D2 were about 8- and 3-fold higher, respectively, in dormant embryos than in nondormant embryos after 3 h of imbibition. Overexpression of D1 continued through 12 h of imbibition, while expression of both mRNAs fell to low and equivalent amounts in dormant and nondormant embryos after 24 h. Similar dormancy-associated changes in two soluble proteins were observed during imbibition. The results demonstrate that steady-state levels of specific mRNAs and proteins change during early imbibition of dormant and nondormant A. fatua embryos and indicate that these changes may be associated with differential gene expression responsible for the maintenance of dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号