首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell signalling for insulin may include insulin receptor tyrosine kinase catalysing the phosphorylation of one or more cell proteins. Since temporally the insulin receptor will encounter plasma membrane protein first, we have studied the in vitro phosphorylation of purified plasma membrane preparations. Two proteins were immunoprecipitated with anti-phosphotyrosine antibody from rat liver, muscle, heart and brain membranes and from human placenta membranes: the insulin receptor (detected as a phosphorylated-β-subunit) and a 180,000 molecular weight protein (pp180). pp180 is a monomeric glycoprotein that in the absence of dithiothreitol migrated in denaturing gels like a 150,000 molecular weight protein. pp180 was a substrate for the insulin receptor: (i) receptor and pp180 phosphorylation followed a similar insulin dose-response, although fold-stimulation of autophosphorylation was greater; and (ii) removal of insulin receptors with monoclonal antibodies prevented subsequent pp180 phosphorylation. Insulin-activated receptors increased the extent, but not the rate, of pp180 phosphorylation; the increased phosphate was incorporated into tyrosine and appeared to do so in three or four of pp180's 12 tryptic phosphopeptides. Some data suggest that pp180 is the same protein in each of the tested tissues. The occurrence of pp180, an insulin receptor substrate, in plasma membranes of several insulin responsive tissues suggests that it has a role in insulin signalling.  相似文献   

2.
An endogenous substrate for the insulin receptor-associated tyrosine kinase   总被引:16,自引:0,他引:16  
Insulin binding to its receptor stimulates a tyrosine-specific protein kinase. This enzyme phosphorylates the insulin receptor, as well as a variety of exogenous substrates in vitro. In the present studies, we have identified an endogenous substrate for the insulin receptor-associated kinase. We studied insulin-stimulated protein phosphorylation in partially purified insulin receptor preparations from the livers of dexamethasone-treated rats. In this cell-free system, insulin stimulated the phosphorylation of its own receptor as well as of a phosphoprotein of apparent Mr = 120,000 (termed pp120). pp120 was not immunoprecipitated by three anti-receptor antisera, nor was the receptor immunoprecipitated by antisera raised against pp120, suggesting that pp120 is not antigenically related or tightly bound to the insulin receptor. Dose-response curves for receptor and pp120 phosphorylation stimulated by pork insulin were essentially identical, and showed the appropriate specificity (insulin much greater than proinsulin) for a receptor-mediated event. Phosphoamino acid analysis revealed that insulin stimulated the incorporation of 32P predominantly into tyrosine residues of pp120. Casein, an artificial substrate for the insulin receptor kinase, competed with pp120 for insulin-stimulated phosphorylation. Phosphorylation of pp120 was rapid (half-maximal effect within 2 min at 24 degrees C) and, like receptor phosphorylation, was supported with Mn2+ or Mg2+ as divalent cation and ATP as the phosphate donor. While receptor autophosphorylation and artificial substrate phosphorylation were not altered by prior treatment of the rats with dexamethasone, insulin-stimulated pp120 phosphorylation was enhanced in preparations derived from dexamethasone-treated rats, suggesting an alteration of pp120, not the receptor, as a result of dexamethasone-treatment. Further studies of this newly identified endogenous substrate may help clarify the physiologic role of the insulin receptor-associated kinase.  相似文献   

3.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

4.
The effects of insulin and anti-(insulin receptor) monoclonal antibodies on tyrosine phosphorylation were investigated in fibroblasts transfected with human insulin receptor cDNA (NIH 3T3HIR3.5 cells) using anti-phosphotyrosine immunoblotting. Insulin increased levels of tyrosine phosphorylation in two major proteins of molecular mass 97 kDa (pp97, assumed to be the insulin receptor beta-subunit) and 185 kDa (pp185). Insulin-mimetic anti-receptor antibodies also stimulated tyrosine phosphorylation of both pp97 and pp185. The observation of antibody-stimulated pp97 phosphorylation, as detected by immunoblotting, is in contrast with previous data which failed to show receptor autophosphorylation in NIH 3T3HIR3.5 cells labelled with [32P]P1. The effect of insulin on pp97 was maximal within 1 min, but the response to antibody was apparent only after a lag of 1-2 min and rose steadily over 20 min. The absolute level of antibody-stimulated phosphorylation of both pp97 and pp185 after 20 min was only about 20% of the maximum level induced by equivalent concentrations of insulin, even at concentrations of antibody sufficient for full occupancy of receptors. Another insulin-mimetic agent, wheat-germ agglutinin, stimulated receptor autophosphorylation with kinetics similar to those produced by the antibody. It is suggested that the relatively slow responses to both agents may be a function of the dependence on receptor cross-linking. These data are consistent with a role for the insulin receptor tyrosine kinase activity in the mechanism of action of insulin-mimetic anti-receptor antibodies.  相似文献   

5.
Insulin treatment of rat H-35 hepatoma cells causes rapid tyrosine phosphorylation of a high molecular weight protein termed pp185 besides autophosphorylation of the beta-subunit of the insulin receptor (IR) in an intact cell system. To elucidate the molecular basis for tyrosine phosphorylation of pp185, cell-free phosphorylation of pp185 was performed using phosphotyrosine-containing proteins (PYPs) purified from detergent-solubilized cell lysates by immunoprecipitation with anti-phosphotyrosine antibody. After insulin treatment of cells, marked increases of tyrosine phosphorylation of pp185 and IR were observed compared to noninsulin-treated cells. Site-specific antibodies that specifically inactivate IR kinase inhibited tyrosine phosphorylation of pp185 as well as the beta-subunit of IR. PYPs purified from detergent-free cell extracts contained pp185 but little IR; tyrosine phosphorylation of pp185 did not occur. Addition of IR kinase purified from human placenta to these PYPs restored insulin-dependent tyrosine phosphorylation of pp185. These results suggest that tyrosine phosphorylation of pp185 is catalyzed directly by IR kinase in this cell-free system.  相似文献   

6.
The effects of species-specific monoclonal antibodies to the human insulin receptor on ribosomal protein S6 phosphorylation were studied in rodent cell lines transfected with human insulin receptors. First, Swiss mouse 3T3 fibroblasts expressing normal human insulin receptors (3T3/HIR cells) were studied. Three monoclonal antibodies, MA-5, MA-20, and MA-51, activated S6 kinase in these cells but had no effects in untransfected 3T3 cells. Both insulin and MA-5, the most potent antibody, activated S6 kinase in a similar time- and dose-dependent manner. To measure S6 phosphorylation in vivo, 3T3/HIR cells were preincubated with [32P]Pi and treated with insulin and MA-5. Both agents increased S6 phosphorylation, and their tryptic phosphopeptide maps were similar. MA-5 and the other monoclonal antibodies, unlike insulin, failed to stimulate insulin receptor tyrosine kinase activity either in vitro or in vivo. Moreover, unlike insulin, they failed to increase the tyrosine phosphorylation of the endogenous cytoplasmic protein, pp 185. Next, HTC rat hepatoma cells, expressing a human insulin receptor mutant that had three key tyrosine autophosphorylation sites in the beta-subunit changed to phenylalanines (HTC-IR-F3 cells), were studied. In this cell line but not in untransfected HTC cells, monoclonal antibodies activated S6 kinase without stimulating either insulin receptor autophosphorylation or the tyrosine phosphorylation of pp 185. These data indicate, therefore, that monoclonal antibodies can activate S6 kinase and then increase S6 phosphorylation. Moreover, they suggest that activation of receptor tyrosine kinase and subsequent tyrosine phosphorylation of cellular proteins may not be crucial for activation of S6 kinase by the insulin receptor.  相似文献   

7.
pp120 undergoes phosphorylation by the tyrosine kinase of the insulin, not the insulin-like growth factor 1 (IGF-1), receptor. Moreover, pp120 stimulates receptor-mediated insulin, but not IGF-1, endocytosis, suggesting that pp120 phosphorylation underlies its effect on insulin endocytosis. pp120 phosphorylation also underlies its bile acid transport and tumor suppression functions. In addition to depending on the intracellular tail, the cell adhesion property of pp120 depends on Arg98 in the N-terminal IgV-like ectoplasmic domain. To investigate whether this domain mediates the effect of pp120 on insulin endocytosis, we mutated Arg98 to Ala and examined whether this mutation altered pp120 phosphorylation and its effect on ligand endocytosis in transfected NIH 3T3 cells. This mutation did not modify either pp120 phosphorylation or its effect on receptor-mediated ligand endocytosis. These findings support the hypothesis that stimulation of insulin endocytosis by pp120 is not mediated by Arg98 in the N-terminal IgV-like ectoplasmic domain of pp120.  相似文献   

8.
Using antiphosphotyrosine antibodies, we have characterized the tyrosine phosphorylation of an endogenous substrate of the insulin receptor in Fao hepatoma cells and in Chinese hamster ovary cells transfected with a eukaryotic expression vector containing the human insulin receptor cDNA. In Fao cells, besides the beta-subunit of the insulin receptor, a protein with a molecular mass between 170 and 210 kDa designated pp185, undergoes tyrosine phosphorylation immediately after insulin stimulation reaching a maximum level within 30 s. After 4 h of continuous insulin stimulation, the labeling of pp185 decreased to less than half of its original intensity, whereas the insulin receptor was unchanged. After 24 h of insulin stimulation, the phosphotyrosine-containing insulin receptor decreased by 75% owing to down-regulation, whereas the pp185 was completely undetectable. By several biochemical and physiological criteria, the pp185 is distinct from the insulin receptor. The pp185 and the beta-subunit of the insulin receptor were strongly labeled with [32P]orthophosphate, but in contrast to the insulin receptor, the pp185 was not labeled by cross-linking with 125I-insulin or surface 125I iodination. Unlike the insulin receptor, the pp185 was extracted from Fao cells without detergent, and tryptic phosphopeptide mapping of the pp185 and the insulin receptor yielded distinct patterns. Thus, the pp185 is not located at the external face of the plasma membrane and does not bind insulin. Treatment of Fao cells with the phorbol ester, phorbol 12-myristate 13-acetate, stimulated the phosphorylation of two proteins with molecular weights of 170 and 210 kDa which were immunoprecipitated with the anti-phosphotyrosine antibody. Subsequent insulin stimulation increased the phosphorylation of the 210 kDa protein, but the pp185 was not detected. Increasing the concentration of the human insulin receptor in the Chinese hamster ovary cells by transfection with a plasmid containing the human insulin receptor cDNA caused a higher level of tyrosine phosphorylation of the beta-subunit and the pp185. These data support the notion that the insulin signal may be transmitted to a cellular substrate (pp185) which may initiate insulin action at intracellular sites.  相似文献   

9.
The beta-subunit of the insulin receptor contains a tyrosine-specific protein kinase. Insulin binding activates this kinase and causes phosphorylation of the beta-subunit of the insulin receptor. It is believed that phosphorylation of other proteins might transmit the insulin signal from the receptor to the cell. In the present study we used a polyclonal anti-phosphotyrosine antibody to detect other proteins that become tyrosine phosphorylated upon insulin stimulation. Glycoproteins from human placenta membranes were enriched by wheat germ agglutinin chromatography and phosphorylation was studied with [gamma-32P]ATP and insulin in vitro. Phosphorylated proteins were immunoprecipitated by antibodies against the insulin receptor and by serum containing the anti-phosphotyrosine antibody. Beside the insulin-stimulated phosphorylation of the 95 kDa beta-subunit of the insulin receptor, an insulin-stimulated phosphorylation of a 180 kDa protein was found. The phosphorylation of both proteins occurred only on tyrosine residues. Insulin increased 32P incorporation into the 180 kDa band 2.7-fold (S.E.M. +/- 0.3, n = 5). The 180 kDa protein was not precipitated by antibodies against the insulin receptor. H.p.l.c. chromatograms of tryptic fragments of the phosphorylated 180 kDa protein and of the beta-subunit of the insulin receptor revealed different patterns for both proteins. Insulin-stimulated phosphorylation of the 180 kDa protein was also detectable in unfractionated detergent-solubilized membranes. The phosphorylation of the 180 kDa protein was stimulated by insulin with the same dose-response curve as the phosphorylation of the beta-subunit, suggesting that this protein might be another endogenous substrate of the insulin receptor kinase.  相似文献   

10.
The effects of cationic polyamino acids on phosphorylation of the insulin and insulin-like growth factor 1 receptor kinases were studied and the following observations were made. (a) Polylysine stimulated both tyrosine and serine phosphorylation of the insulin receptor and of additional proteins present in lectin-purified membrane preparations from rat liver. (b) Polylysine synergized with insulin to enhance phosphorylation of the insulin receptor and of additional proteins (pp40 and pp110). (c) Polylysine effects were more pronounced upon increasing the polylysine chain length. (d) The effect of polylysine was biphasic with an optimum at 100 micrograms/ml. (e) Polylysine was found ineffective in stimulating the phosphorylation of immobilized insulin receptors. Taken together, these findings support the notion that the action of polylysine involves conformational changes and presumably aggregation of soluble receptors. The same effects of polylysine were obtained with highly purified insulin receptor preparations. Under these conditions polylysine enhanced both serine and tyrosine phosphorylation of the insulin receptor, suggesting that polylysine stimulates the activity of the insulin receptor kinase, and of a serine kinase that is tightly associated with the insulin receptor.  相似文献   

11.
The action of insulin on tyrosine phosphorylation of plasma membrane-associated proteins in rat adipocytes was investigated. Incubation of plasma membranes from insulin-treated adipocytes with [gamma-32P] ATP results in a marked increase in tyrosine phosphorylation of Mr = 160,000 (P160) and Mr = 92,000 proteins when compared to controls. Based on the immunoreactivities of these two proteins with anti-insulin receptor antibodies, the Mr = 92,000 species is identified as the insulin receptor beta subunit while P160 is unrelated to the receptor structure. P160 appears to be a glycoprotein as evidenced by its adsorption to wheat germ agglutinin-agarose. The tyrosine phosphorylation of P160 exhibits a rapid response to insulin (maximal within 2 min at 37 degrees C) and is readily reversed following removal of the free hormone by anti-insulin serum. The time courses of insulin-stimulated phosphorylation as well as the dephosphorylation of P160 coincide with those of the activation and deactivation of the insulin receptor kinase in the same plasma membrane preparation. Concanavalin A and hydrogen peroxide mimic insulin stimulation of the insulin receptor kinase and enhance the tyrosine phosphorylation of P160. Isoproterenol, epidermal growth factor, and phorbol diester are without effects. Analysis of the insulin dose-response relationship between P160 tyrosine phosphorylation and insulin receptor kinase activity reveals that maximal phosphorylation of P160 occurs when only a fraction (25%) of the receptor kinase is activated by the hormone. A similar relationship between these two parameters is observed for the insulinomimetic agent hydrogen peroxide. The close correlation between the level of P160 phosphorylation and insulin receptor kinase activity suggests that P160 may be tyrosine phosphorylated by the receptor kinase following receptor kinase activation by the hormone or insulin-like agents. This hypothesis is further supported by the finding that the insulin receptor kinase is the only insulin-sensitive tyrosine kinase detectable in adipocyte plasma membranes under the conditions of our experiments.  相似文献   

12.
Both the insulin receptor and the gene product of the Rous sarcoma virus, pp60src, are protein kinases which phosphorylate themselves and other proteins on tyrosine residues. Addition of the solubilized insulin receptor to purified pp60src increased the phosphorylation of the beta-subunit of the insulin receptor. Phosphorylation of the insulin receptor by pp60src occurred both in the absence and presence of insulin but did not alter the insulin dose response for autophosphorylation of the receptor. Increasing concentrations of pp60src increased the phosphorylation of the receptor and at high concentrations equaled the maximal effect produced by insulin. Our observations suggest a possible mechanism by which the metabolically regulated insulin receptor tyrosine kinase could be altered by other tyrosine kinases such as that associated with pp60src. Further studies will be required to determine if the insulin receptor is phosphorylated by pp60src in Rous sarcoma virus-infected cells.  相似文献   

13.
Shc and CEACAM1 interact to regulate the mitogenic action of insulin.   总被引:4,自引:0,他引:4  
CEACAM1, a tumor suppressor (previously known as pp120), is a plasma membrane protein that undergoes phosphorylation on Tyr(488) in its cytoplasmic tail by the insulin receptor tyrosine kinase. Co-expression of CEACAM1 with insulin receptors decreased cell growth in response to insulin. Co-immunoprecipitation experiments in intact NIH 3T3 cells and glutathione S-transferase pull-down assays revealed that phosphorylated Tyr(488) in CEACAM1 binds to the SH2 domain of Shc, another substrate of the insulin receptor. Overexpressing Shc SH2 domain relieved endogenous Shc from binding to CEACAM1 and restored MAP kinase activity, growth of cells in response to insulin, and their colonization in soft agar. Thus, by binding to Shc, CEACAM1 sequesters this major coupler of Grb2 to the insulin receptor and down-regulates the Ras/MAP kinase mitogenesis pathway. Additionally, CEACAM1 binding to Shc enhances its ability to compete with IRS-1 for phosphorylation by the insulin receptor. This leads to a decrease in IRS-1 binding to phosphoinositide 3'-kinase and to the down-regulation of the phosphoinositide 3'-kinase/Akt pathway that mediates cell proliferation and survival. Thus, binding to Shc appears to constitute a major mechanism for the down-regulatory effect of CEACAM1 on cell proliferation.  相似文献   

14.
Signaling molecules downstream from the insulin receptor, such as the insulin receptor substrate protein 1 (IRS-1), are also activated by other receptor tyrosine kinases. Here we demonstrate that the non-receptor tyrosine kinases, focal adhesion kinase pp125(FAK) and Src-class kinase pp59(Lyn), after insulin-independent activation by phosphoinositolglycans (PIG), can cross talk to metabolic insulin signaling in rat and 3T3-L1 adipocytes. Introduction by electroporation of neutralizing antibodies against pp59(Lyn) and pp125(FAK) into isolated rat adipocytes blocked IRS-1 tyrosine phosphorylation in response to PIG but not insulin. Introduction of peptides encompassing either the major autophosphorylation site of pp125(FAK), tyrosine 397, or its regulatory loop with the twin tyrosines 576 and 577 inhibited PIG-induced IRS-1 tyrosine phosphorylation and glucose transport. PIG-induced pp59(Lyn) kinase activation and pp125(FAK) tyrosine phosphorylation were impaired by the former and latter peptide, respectively. Up-regulation of pp125(FAK) by integrin clustering diminished PIG-induced IRS-1 tyrosine phosphorylation and glucose transport in nonadherent but not adherent adipocytes. In conclusion, PIG induced IRS-1 tyrosine phosphorylation by causing (integrin antagonized) recruitment of IRS-1 and pp59(Lyn) to the common signaling platform molecule pp125(FAK), where cross talk of PIG-like structures and extracellular matrix proteins to metabolic insulin signaling may converge, possibly for the integration of the demands of glucose metabolism and cell architecture.  相似文献   

15.
In the last few years several potential substrates of the insulin receptor tyrosine kinase have been identified, purified, and their cDNAs isolated. These putative substrates include: 1) pp15, a fatty acid-binding protein; 2) pp120, a plasma membrane ecto-ATPase; 3) pp42, a MAP serine/threonine kinase; 4) pp85, a subunit of the Type 1 phosphatidylinositol kinase; and 5) pp185, a phosphatidylinositol kinase binding protein. Although the tyrosine phosphorylation of several of these substrates correlates with the signalling capabilities of various mutant receptors, the role of these substrates in mediating any one of insulin's many biological responses is still unknown. In addition, recent data indicate that the tyrosine phosphorylation of pp42 may in fact be due to autophosphorylation, thereby removing it from the list of putative substrates of the insulin receptor kinase. Finally, the present review discusses the question of whether signalling occurs as a result of the tyrosine phosphorylation of substrates or via the formation of signalling complexes.  相似文献   

16.
When rabbit isolated gastric glands were stimulated via the cyclic AMP pathway, a phosphorylated protein band of about 120 kDa (pp120) was markedly increased in the apical membrane-rich fraction, concomitant with an increase in the amount of H,K-ATPase and the phosphorylation of the cytoskeletal protein ezrin in the same fraction. The cytosolic fraction, but not other membrane fractions, also contained a protein with common features to the membrane-bound pp120, i.e., comigration in two-dimensional gels with a pI of ∼4.5, anomalous mobility in SDS-PAGE, reactivity to antibodies, and phosphorylation, indicating that these two proteins were identical. The possibility that pp120 is vinculin was completely excluded. Using antibody against pp120, this protein was found to be almost exclusively in the gastric parietal cell. Biochemical and immunohistochemical analyses suggest that pp120 exists mainly in the cytosol, and that a small part of the protein binds to the apical membrane when the parietal cell is stimulated via the cyclic AMP pathway. In the presence of histone, purified pp120 produced phosphorylation on pp120 as well as histone. The inhibitor profile of this kinase activity is not consistent with any known kinase. We conclude that pp120 is closely associated with a new type of kinase, and translocates from cytosol to the apical membrane when the parietal cell is stimulated. Received: 9 September 1998/Revised: 29 December 1998  相似文献   

17.
Western blotting with anti-phosphotyrosine antibodies was employed in order to study insulin-dependent protein tyrosine phosphorylation in intact Fao cells. In insulin-treated cells, a prominent 180-kDa protein underwent tyrosine phosphorylation, which peaked at 45 s and then rapidly declined. Pretreatment of the cells with 1 mM Bt2cAMP or 0.16 microM 12-O-tetradecanoylphorbol-13-acetate inhibited the insulin-dependent phosphorylation of pp 180, while 1 mM vanadate or 3 mM H2O2 markedly potentiated it. These results indicate that phosphorylation of pp 180 is respectively regulated by agents that are known to synergize with or antagonize the action of the insulin receptor kinase. pp 180 is therefore likely to mediate physiological functions of this receptor kinase. Incubation of Fao cells with 3 mM H2O2 for 30 min prior to their treatment with insulin for 45 s allowed the detection of additional, previously undescribed, proteins pp 150, 114, 100, 85, 68, and 56 kDa that underwent insulin-dependent tyrosine phosphorylation. The potentiating effects of H2O2 were time- and dose-dependent and could be reversed by 2 mM dithiothreitol. Proteins phosphorylated in response to H2O2 plus insulin maintained their fully phosphorylated state for at least 20 min. We suggest that these phosphoproteins are potential physiological substrates for the insulin receptor kinase.  相似文献   

18.
Insulin and IGF-1 (insulin-like growth factor 1) rapidly stimulate the phosphorylation on tyrosine of a 160 kDa cytosolic protein (pp160) in intact 3T3-L1 adipocytes. Half-maximal phosphorylation of pp160 is attained with either 4 nM-insulin or 20 nM-IGF-1. A semi-quantitative immunoblotting procedure using anti-phosphotyrosine antibody revealed that the insulin-stimulated 3T3-L1 adipocyte possesses approx. 3 x 10(5) and 0.6 x 10(5) phosphotyrosyl sites, respectively, in pp160 and insulin receptor beta-subunit. Removal of insulin from stimulated cells results in the rapid (within 15 min) loss of phosphate groups from tyrosyl residues in both pp160 and receptor beta-subunit. Whereas pp160 remains maximally phosphorylated on tyrosine for up to 60 min in the presence of 100 nM-insulin, IGF-1 at the same concentration induces only a transient response that is maximally 50% of that observed with insulin. pp160 is not phosphorylated on tyrosine in response to platelet-derived growth factor or epidermal growth factor. Although pp160 appears to be a soluble cytoplasmic protein, in the presence of 1 mM-ZnCl2 it becomes membrane-associated. In view of its apparent cytoplasmic localization and its inability to bind to either wheat-germ agglutinin or concanavalin A, pp160 does not appear to be a typical glycoprotein growth-factor receptor. Our results suggest that pp160 may be a physiologically important cellular substrate of the insulin-receptor tyrosine kinase in the intact 3T3-L1 adipocyte.  相似文献   

19.
Dok, a 62-kDa Ras GTPase-activating protein (rasGAP)-associated phosphotyrosyl protein, is thought to act as a multiple docking protein downstream of receptor or non-receptor tyrosine kinases. Cell adhesion to extracellular matrix proteins induced marked tyrosine phosphorylation of Dok. This adhesion-dependent phosphorylation of Dok was mediated, at least in part, by Src family tyrosine kinases. The maximal insulin-induced tyrosine phosphorylation of Dok required a Src family kinase. A mutant Dok (DokDeltaPH) that lacked its pleckstrin homology domain failed to undergo tyrosine phosphorylation in response to cell adhesion or insulin. Furthermore, unlike the wild-type protein, DokDeltaPH did not localize to subcellular membrane components. Insulin promoted the association of tyrosine-phosphorylated Dok with the adapter protein NCK and rasGAP. In contrast, a mutant Dok (DokY361F), in which Tyr361 was replaced by phenylalanine, failed to bind NCK but partially retained the ability to bind rasGAP in response to insulin. Overexpression of wild-type Dok, but not that of DokDeltaPH or DokY361F, enhanced the cell migratory response to insulin without affecting insulin activation of mitogen-activated protein kinase. These results identify Dok as a signal transducer that potentially links, through its interaction with NCK or rasGAP, cell adhesion and insulin receptors to the machinery that controls cell motility.  相似文献   

20.
Concanavalin A (ConA) stimulated the phosphorylation of the beta-subunit of the insulin receptor and an Mr-185,000 protein on serine and tyrosine residues in intact H-35 rat hepatoma cells. This Mr-185,000 protein whose phosphorylation was stimulated by ConA was identical to pp185, a protein reported previously to be a putative endogenous substrate for the insulin receptor tyrosine kinase in rat hepatoma cells. In Chinese hamster ovary (CHO) cells transfected with cDNA of the human insulin receptor, tyrosine-phosphorylation of pp185 was strongly enhanced by ConA compared with the controls, suggesting that the induction of tyrosine-phosphorylation of pp185 was due to stimulation of the insulin receptor kinase by ConA. Moreover, monovalent ConA only slightly induced the tyrosine-phosphorylation of pp185, which was enhanced by the addition of anti-ConA IgG, suggesting that ConA stimulated the insulin receptor kinase mainly by the receptor cross-linking or aggregation in intact cells. These data suggest that the insulin-mimetic action of ConA is related to the autophosphorylation and activation of the insulin receptor tyrosine kinase, as well as the subsequent phosphorylation of pp185 in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号