首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many proteins, including actin, are targets for S-glutathionylation, the reversible formation of mixed disulphides between protein cysteinyl thiol groups and glutathione (GSH) that can be induced in cells by oxidative stress. Proposed mechanisms of protein S-glutathionylation follow mainly two distinct pathways. One route involves the initial oxidative modification of a reduced protein thiol to an activated protein, which may then react with GSH to the mixed disulphide. The second route involves the oxidative modification of GSH to an activated form such as glutathione disulphide (GSSG), which may then react with a reduced protein thiol, yielding the corresponding protein mixed disulphide. We show here that physiological levels of GSSG induce a little extent of actin S-glutathionylation. Instead, actin with the exposed cysteine thiol activated by diamide or 5,5'-dithiobis(2-nitrobenzoic acid) reacts with physiological levels of GSH, incorporating about 0.7 mol GSH/mol protein. Differently, an extremely high concentration of GSSG induces an increased level of S-glutathionylation that causes a 50% inhibition in actin polymerization not reversed by dithiotreitol. In mammalian cells, GSH is present in millimolar concentrations and is in about 100-fold excess over GSSG. The high concentration of GSSG required for obtaining a significant actin S-glutathionylation as well as attendant irreversible changes in protein functions make unlikely that actin may be S-glutathionylated by a thiol-disulphide exchange mechanism within the cell.  相似文献   

2.
I DalleDonne  A Milzani  R Colombo 《Biochemistry》1999,38(38):12471-12480
The susceptibility of monomeric actin to both methionine and cysteine oxidation when treated with the oxidizing agent tert-butyl hydroperoxide (t-BH) was investigated. The results show that no methionine residue was susceptible to oxidation by t-BH at concentrations of 1-20 mM, while Cys-374, one of the five cysteine residues of the actin molecule, was found to be the site of the oxidative modification. Perturbations in the intrinsic tryptophan fluorescence and the decreased susceptibility to limited proteolysis by alpha-chymotrypsin and subtilisin of oxidized actin give an indication of some alterations in protein conformation in subdomain 1, and in the central segment of surface loop 39-51, in subdomain 2. Urea denaturation curves indicate a lower conformational stability for the oxidized actin. G-actin structural alterations due to Cys-374 oxidation produced by t-BH result in a decrease in the maximum rate of polymerization, an increase in both the delay time and the time required for half-maximum assembly, a decrease in the elongation rate, and enhancement of the critical monomer concentration for polymerization. The results suggest that oxidation of actin Cys-374 induces structural alterations in the conformation of at least two different distant regions of the molecule. The involvement of both the C-terminus of the actin polypeptide chain and the DNase-I-binding loop in the intermonomer interactions in the polymer could account for the altered kinetics of polymerization shown by the oxidized actin.  相似文献   

3.
Reversible glutathionylation regulates actin polymerization in A431 cells.   总被引:5,自引:0,他引:5  
In response to growth factor stimulation, many mammalian cells transiently generate reactive oxygen species (ROS) that lead to the elevation of tyrosine-phosphorylated and glutathionylated proteins. While investigating EGF-induced glutathionylation in A431 cells, paradoxically we found deglutathionylation of a major 42-kDa protein identified as actin. Mass spectrometric analysis revealed that the glutathionylation site is Cys-374. Deglutathionylation of the G-actin leads to about a 6-fold increase in the rate of polymerization. In vivo studies revealed a 12% increase in F-actin content 15 min after EGF treatment, and F-actin was found in the cell periphery suggesting that in response to growth factor, actin polymerization in vivo is regulated by a reversible glutathionylation mechanism. Deglutathionylation is most likely catalyzed by glutaredoxin (thioltranferase), because Cd(II), an inhibitor of glutaredoxin, inhibits intracellular actin deglutathionylation at 2 microM comparable with its IC(50) in vitro. Moreover, mass spectral analysis showed efficient transfer of GSH from immobilized S-glutathionylated actin to glutaredoxin. Overall, this study revealed a novel physiological relevance of actin polymerization regulated by reversible glutathionylation of the penultimate cysteine mediated by growth factor stimulation.  相似文献   

4.
Boggs JM  Rangaraj G 《Biochemistry》2000,39(26):7799-7806
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes (OLs) and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. MBP in solution has been shown by others to bind to both G- and F-actin, to bundle F-actin filaments, and to induce polymerization of G-actin. Here we show that MBP bound to acidic lipids can also bind to both G- and F-actin and cause their sedimentation together with MBP-lipid vesicles. Thus it can simultaneously utilize some of its basic residues to bind to the lipid bilayer and some to bind to actin. The amount of actin bound to the MBP-lipid vesicles decreased with increasing net negative surface charge of the lipid vesicles. It was also less for vesicles containing the lipid composition predicted for the cytosolic surface of myelin than for PC vesicles containing a similar amount of an acidic lipid. Calmodulin caused dissociation of actin from MBP and of the MBP-actin complex from the vesicles. However, it did not cause dissociation of bundles of actin filaments once these had formed as long as some MBP was still present. These results suggest that MBP could be a membrane actin-binding protein in OLs/myelin and its actin binding can be regulated by calmodulin and by the lipid composition of the membrane. Actin binding to MBP decreased the labeling of MBP by the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine (TID), indicating that it decreased the hydrophobic interactions of MBP with the bilayer. This change in interaction of MBP with the bilayer could then create a cytosol to membrane signal caused by changes in interaction of the cytoskeleton with the membrane.  相似文献   

5.
A significant specific increase in the actin carbonyl content has been recently demonstrated in human brain regions severely affected by the Alzheimer's disease pathology, in postischemic isolated rat hearts, and in human intestinal cell monolayers following incubation with hypochlorous acid (HOCl). We have very recently shown that exposure of actin to HOCl results in the immediate loss of Cys-374 thiol, oxidation of some methionine residues, and, at higher molar ratios of oxidant to protein, increase in protein carbonyl groups, associated with filament disruption and inhibition of filament formation. In the present work, we have studied the effect of methionine oxidation induced by chloramine-T (CT), which at neutral or slightly alkaline pH oxidizes preferentially Met and Cys residues, on actin filament formation and stability utilizing actin blocked at Cys-374. Methionines at positions 44, 47, and 355, which are the most solvent-exposed methionyl residues in the actin molecule, were found to be the most susceptible to oxidation to the sulfoxide derivative. Met-176, Met-190, Met-227, and Met-269 are the other sites of the oxidative modification. The increase in fluorescence associated with the binding of 8-anilino-1-naphtalene sulfonic acid to hydrophobic regions of the protein reveals that actin surface hydrophobicity increases with oxidation, indicating changes in protein conformation. Structural alterations were confirmed by the decreased susceptibility to proteolysis and by urea denaturation curves. Oxidation of some critical methionines (those at positions 176, 190, and 269) causes a complete inhibition of actin polymerization and severely affects the stability of actin filaments, which rapidly depolymerize. The present results would indicate that the oxidation of some critical methionines disrupts specific noncovalent interactions that normally stabilize the structure of actin filaments. We suggest that the process involving formation of actin carbonyl derivatives would occur at an extent of oxidative insult higher than that causing the oxidation of some critical methionine residues. Therefore, methionine oxidation could be a damaging event preceding the appearance of carbonyl groups on actin and a major cause for the functional impairment of the carbonylated protein recently observed both in vivo and in vitro.  相似文献   

6.
The polymerization of G-actin is prevented by concentrations of gadolinium (GdIII) that exceed the ATP present. Since the susceptibility of G-actin to enzymatic proteolysis is slightly decreased upon addition of GdIII, and the digestibility of F-actin is markedly increased with the same treatment, it appears that actin undergoes GdIII-induced conformational changes. The altered states of actin formed inhibit the GdIII-ATPase activity of myosin, but in all cases, the effect of GdIII on actin is reversed by removal of the trivalent ion with ATP. The reversible changes in conformation induced by GdIII create a state of actin which has properties unlike those of G-actin, F-monomer or F-actin.  相似文献   

7.
"Stimulated actin polymerization" has been proposed to be involved in force augmentation, in which prior submaximal activation of vascular smooth muscle increases the force of a subsequent maximal contraction by ~15%. In this study, we altered stimulated actin polymerization by adjusting tissue length and then measured the effect on force augmentation. At optimal tissue length (1.0 L(o)), force augmentation was observed and was associated with increased prior stimulated actin polymerization, as evidenced by increased prior Y118 paxillin phosphorylation without changes in prior S3 cofilin or cross-bridge phosphorylation. Tissue length, per se, regulated Y118 paxillin, but not S3 cofilin, phosphorylation. At short tissue length (0.6 L(o)), force augmentation was observed and was associated with increased prior stimulated actin polymerization, as evidenced by reduced prior S3 cofilin phosphorylation without changes in Y118 paxillin or cross-bridge phosphorylation. At long tissue length (1.4 L(o)), force augmentation was not observed, and there were no prior changes in Y118 paxillin, S3 cofilin, or cross-bridge phosphorylation. There were no significant differences in the cross-bridge phosphorylation transients before and after the force augmentation protocol at all three lengths tested. Tissues contracted faster at longer tissue lengths; contractile rate correlated with prior Y118 paxillin phosphorylation. Total stress, per se, predicted Y118 paxillin phosphorylation. These data suggest that force augmentation is regulated by stimulated actin polymerization and that stimulated actin polymerization is regulated by total arterial stress. We suggest that K(+) depolarization first leads to cross-bridge phosphorylation and contraction, and the contraction-induced increase in mechanical strain increases Y118 paxillin phosphorylation, leading to stimulated actin polymerization, which further increases force, i.e., force augmentation and, possibly, latch.  相似文献   

8.
Phalloidin increases F-actin microfilament content and actin-directed immunofluorescence in hepatocytes in vivo and also increases actin polymerization and the stability of F-actin in vitro. We studied the sensitivity of immunofluorescent staining of actin to an actin depolymerizing factor (ADF) as well as actin content, degree of polymerization, and turnover in livers of in vivo phalloidin-treated rats. Pretreatment with ADF abolished anti-actin antibody (AAA) staining of normal liver but did not modify staining of livers from phalloidin-treated animals. Plani-metric analyses of SDS-polyacrylamide gels snowed the percent actin of total protein was increased by approximately 40% and the absolute amount of actin by approximately 43%, ten days after daily phalloidin treatment (50 μg/100 gm body weight). Similar but smaller changes could be seen after one day of treatment. Ultracentrifugational analyses of liver extracts indicated no change in the amount or proportion of G-actin but a 194% increase in the proportion of F-actin in ten-day treated animals, changes also apparent in one day animals. Neither the relative fractional rate of actin synthesis nor its synthesis as a percent of total protein synthesis was altered either at one-day or ten-day post-phalloidin treatment. Dual-isotope experiments indicated that the rate of actin degradation was decreased selectively in the one- to three-day period -following drug treatment. Thus, phalloidin appears to stabilize actin against the depolymerizing actions of ADF, increases the proportion of F-actin without altering the size of the G-actin pool, and causes accumulation of actin by decreasing its relative rate of degradation.  相似文献   

9.
Leishmania actin was cloned, overexpressed in baculovirus-insect cell system, and purified to homogeneity. The purified protein polymerized optimally in the presence of Mg2+ and ATP, but differed from conventional actins in its following properties: (i) it did not polymerize in the presence of Mg2+ alone, (ii) it polymerized in a restricted range of pH 7.0-8.5, (iii) its critical concentration for polymerization was found to be 3-4-fold lower than of muscle actin, (iv) it predominantly formed bundles rather than single filaments at pH 8.0, (v) it displayed considerably higher ATPase activity during polymerization, (vi) it did not inhibit DNase-I activity, and (vii) it did not bind the F-actin-binding toxin phalloidin or the actin polymerization disrupting agent Latrunculin B. Computational and molecular modeling studies revealed that the observed unconventional behavior of Leishmania actin is related to the diverged amino acid stretches in its sequence, which may lead to changes in the overall charge distribution on its solvent-exposed surface, ATP binding cleft, Mg2+ binding sites, and the hydrophobic loop that is involved in monomer-monomer interactions. Phylogenetically, it is related to ciliate actins, but to the best of our knowledge, no other actin with such unconventional properties has been reported to date. It is therefore suggested that actin in Leishmania may serve as a novel target for design of new antileishmanial drugs.  相似文献   

10.
ADP-ribosylated actin caps the barbed ends of actin filaments   总被引:13,自引:0,他引:13  
The mode of action on actin polymerization of skeletal muscle actin ADP-ribosylated on arginine 177 by perfringens iota toxin was investigated. ADP-ribosylated actin decreased the rate of nucleated actin polymerization at substoichiometric ratios of ADP-ribosylated actin to monomeric actin. ADP-ribosylated actin did not tend to copolymerize with actin. Actin filaments were depolymerized by the addition of ADP-ribosylated actin. The maximal monomer concentration reached by addition of ADP-ribosylated actin was similar to the critical concentration of the pointed ends of actin filaments. ADP-ribosylated actin had no effect on the rate of polymerization of gelsolin-capped actin filaments which polymerize at the pointed ends. The results suggest that ADP-ribosylated actin acts as a capping protein which binds to the barbed ends of actin filaments to inhibit polymerization. Based on an analysis of the depolymerizing effect of ADP-ribosylated actin, the equilibrium constant for binding of ADP-ribosylated actin to the barbed ends of actin filaments was determined to be about 10(8) M-1. As actin is ADP-ribosylated by perfringens iota toxin and by botulinum C2 toxin, it appears that conversion of actin into a capping protein by ADP-ribosylation is a pathophysiological reaction catalyzed by bacterial toxins which ultimately leads to inhibition of actin assembly.  相似文献   

11.
Actin polymerization as part of the normal smooth muscle response to various stimuli has been reported. The actin dynamics are believed to be necessary for cytoskeletal remodeling in smooth muscle in its adaptation to external stress and strain and for maintenance of optimal contractility. We have shown in our previous studies in airway smooth muscle that myosins polymerized in response to contractile activation as well as to adaptation at longer cell lengths. We postulated that the same response could be elicited from actins under the same conditions. In the present study, actin filament formation was quantified electron microscopically in cell cross sections. Nanometer resolution allowed us to examine regional distribution of filaments in a cell cross section. Airway smooth muscle bundles were fixed in relaxed and activated states at two lengths; muscle preparations were also fixed after a period of oscillatory strain, a condition known to cause depolymerization of myosin filaments. The results indicate that contractile activation and increased cell length nonsynergistically enhanced actin polymerization; the extent of actin polymerization was substantially less than that of myosin polymerization. Oscillatory strain increased thin filament formation. Although thin filament density was found higher in cytoplasmic areas near dense bodies, contractile activation did not preferentially enhance actin polymerization in these areas. It is concluded that actin thin filaments are dynamic structures whose length and number are regulated by the cell in response to changes in extracellular environment and that polymerization and depolymerization of thin filaments occur uniformly across the whole cell cross section.  相似文献   

12.
Endosomes in yeast have been hypothesized to move through the cytoplasm by the momentum gained after actin polymerization has driven endosome abscision from the plasma membrane. Alternatively, after abscission, ongoing actin polymerization on endosomes could power transport. Here, we tested these hypotheses by showing that the Arp2/3 complex activation domain (WCA) of Las17 (Wiskott-Aldrich syndrome protein [WASp] homologue) fused to an endocytic cargo protein (Ste2) rescued endosome motility in las17DeltaWCA mutants, and that capping actin filament barbed ends inhibited endosome motility but not endocytic internalization. Motility therefore requires continual actin polymerization on endosomes. We also explored how Las17 is regulated. Endosome motility required the Las17-binding protein Lsb6, a type II phosphatidylinositol 4-kinase. Catalytically inactive Lsb6 interacted with Las17 and promoted endosome motility. Lsb6 therefore is a novel regulator of Las17 that mediates endosome motility independent of phosphatidylinositol 4-phosphate synthesis. Mammalian type II phosphatidylinositol 4-kinases may regulate WASp proteins and endosome motility.  相似文献   

13.
We recently demonstrated that S-glutathionylation of the death receptor Fas (Fas-SSG) amplifies apoptosis (V. Anathy et al., J. Cell Biol. 184:241-252, 2009). In the present study, we demonstrate that distinct pools of Fas exist in cells. Upon ligation of surface Fas, a separate pool of latent Fas in the endoplasmic reticulum (ER) underwent rapid oxidative processing characterized by the loss of free sulfhydryl content (Fas-SH) and resultant increases in S-glutathionylation of Cys294, leading to increases of surface Fas. Stimulation with FasL rapidly induced associations of Fas with ERp57 and glutathione S-transferase π (GSTP), a protein disulfide isomerase and catalyst of S-glutathionylation, respectively, in the ER. Knockdown or inhibition of ERp57 and GSTP1 substantially decreased FasL-induced oxidative processing and S-glutathionylation of Fas, resulting in decreased death-inducing signaling complex formation and caspase activity and enhanced survival. Bleomycin-induced pulmonary fibrosis was accompanied by increased interactions between Fas-ERp57-GSTP1 and S-glutathionylation of Fas. Importantly, fibrosis was largely prevented following short interfering RNA-mediated ablation of ERp57 and GSTP. Collectively, these findings illuminate a regulatory switch, a ligand-initiated oxidative processing of latent Fas, that controls the strength of apoptosis.  相似文献   

14.
A 41-kilodalton macrophage capping protein (MCP) has been isolated which is capable of forming complexes with actin monomers in addition to capping the barbed ends of actin filaments (Southwick & DiNubile, 1986). The protein is calcium activated in a fully reversible manner. Using kinetic assays, we determined a capping constant, defined here as a modified Kd, of 1 nM and a Kd of 3-4 microM for MCP-actin monomer complex formation. MCP weakly nucleates actin polymerization: more than 0.5 microM MCP is necessary to shorten the lag period, and 1 microM MCP at an actin/MCP ratio of 10 reduces the average length of actin filaments to about 200 molecules per filament. We determined that the actin nucleus that survives MCP inactivation contains a minimum number of five actin molecules. These experiments also make a point with respect to the interpretation of the prolongation of the lag period. We directly demonstrate that in the presence of an actin binding protein a prolongation of the lag period can be associated with increased nucleation, contrary to the usual interpretation in the literature that it indicates no or decreased nucleation by the actin binding protein.  相似文献   

15.
Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.  相似文献   

16.
Contractile stimulation induces actin polymerization in smooth muscle tissues and cells, and the inhibition of actin polymerization depresses smooth muscle force development. In the present study, the role of Cdc42 in the regulation of actin polymerization and tension development in smooth muscle was evaluated. Acetylcholine stimulation of tracheal smooth muscle tissues increased the activation of Cdc42. Plasmids encoding wild type Cdc42 or a dominant negative Cdc42 mutant, Asn-17 Cdc42, were introduced into tracheal smooth muscle strips by reversible permeabilization, and tissues were incubated for 2 days to allow for protein expression. Expression of recombinant proteins was confirmed by immunoblot analysis. The expression of the dominant negative Cdc42 mutant inhibited contractile force and the increase in actin polymerization in response to acetylcholine stimulation but did not inhibit the increase in myosin light chain phosphorylation. The expression of wild type Cdc42 had no significant effect on force, actin polymerization, or myosin light chain phosphorylation. Contractile stimulation increased the association of neuronal Wiskott-Aldrich syndrome protein with Cdc42 and the Arp2/3 (actin-related protein) complex in smooth muscle tissues expressing wild type Cdc42. The agonist-induced increase in these protein interactions was inhibited in tissues expressing the inactive Cdc42 mutant. We conclude that Cdc42 activation regulates active tension development and actin polymerization during contractile stimulation. Cdc42 may regulate the activation of neuronal Wiskott-Aldrich syndrome protein and the actin related protein complex, which in turn regulate actin filament polymerization initiated by the contractile stimulation of smooth muscle.  相似文献   

17.
Actin is the major constituent of the cytoskeleton of almost all the eukaryotic cells. In vitro experiments have indicated that oxidant-stressed nonmuscle mammalian cells undergo remarkable changes in their morphology and in the structure of the actin cytoskeleton, often resulting in plasma membrane blebbing. Although the microfilament network is one of the earliest targets of oxidative stress, the mechanism by which oxidants change both the structure and the spatial organization of actin filaments is still a matter of debate and far from being fully elucidated. Starting from the 2-fold role of oxidants as injurious by-products of cellular metabolism and essential participants in cell signaling and regulation, this review attempts to gather the most relevant information related to (i) the activation of mitogen-activated protein (MAP) kinase stress-activated protein kinase-2/p38 (SAPK2/p38) which, via MAP kinase-activated protein (MAPKAP) kinase 2/3, leads to the phosphorylation of the actin polymerization (F-actin) modulator 25/27 kDa heat shock protein (HSP25/27), whose phosphorylation is causally related to the regulation of microfilament dynamics following oxidative stress; (ii) the alteration of the redox state of actin or some actin regulatory proteins. The actin cytoskeleton response to oxidants is discussed on the basis of the growing body of evidence indicating the actin system as the most sensitive constituent of the cytoskeleton to the oxidant attack.  相似文献   

18.
Remodeling of actin filaments is necessary for epithelial-mesenchymal transition (EMT); however, understanding of how this is regulated in real time is limited. We used an actin filament reporter and high-resolution live-cell imaging to analyze the regulated dynamics of actin filaments during transforming growth factor-β-induced EMT of mammary epithelial cells. Progressive changes in cell morphology were accompanied by reorganization of actin filaments from thin cortical bundles in epithelial cells to thick, parallel, contractile bundles that disassembled more slowly but remained dynamic in transdifferentiated cells. We show that efficient actin filament remodeling during EMT depends on increased expression of the ezrin/radixin/moesin (ERM) protein moesin. Cells suppressed for moesin expression by short hairpin RNA had fewer, thinner, and less stable actin bundles, incomplete morphological transition, and decreased invasive capacity. These cells also had less α-smooth muscle actin and phosphorylated myosin light chain in cortical patches, decreased abundance of the adhesion receptor CD44 at membrane protrusions, and attenuated autophosphorylation of focal adhesion kinase. Our findings suggest that increased moesin expression promotes EMT by regulating adhesion and contractile elements for changes in actin filament organization. We propose that the transciptional program driving EMT controls progressive remodeling of actin filament architectures.  相似文献   

19.
20.
Contractile stimulation has been shown to initiate actin polymerization in smooth muscle tissues, and this actin polymerization is required for active tension development. We evaluated whether neuronal Wiskott-Aldrich syndrome protein (N-WASp)-mediated activation of the actin-related proteins 2 and 3 (Arp2/3) complex regulates actin polymerization and tension development initiated by muscarinic stimulation in canine tracheal smooth muscle tissues. In vitro, the COOH-terminal CA domain of N-WASp acts as an inhibitor of N-WASp-mediated actin polymerization; whereas the COOH-terminal VCA domain of N-WASp is constitutively active and is sufficient by itself to catalyze actin polymerization. Plasmids encoding EGFP-tagged wild-type N-WASp, the N-WASp VCA and CA domains, or enhanced green fluorescent protein (EGFP) were introduced into tracheal smooth muscle strips by reversible permeabilization, and the tissues were incubated for 2 days to allow for expression of the proteins. Expression of the CA domain inhibited actin polymerization and tension development in response to ACh, whereas expression of the wild-type N-WASp, the VCA domain, or EGFP did not. The increase in myosin light-chain (MLC) phosphorylation in response to contractile stimulation was not affected by expression of either the CA or VCA domain of N-WASp. Stimulation of the tissues with ACh increased the association of the Arp2/3 complex with N-WASp, and this association was inhibited by expression of the CA domain. The results demonstrate that 1) N-WASp-mediated activation of the Arp2/3 complex is necessary for actin polymerization and tension development in response to muscarinic stimulation in tracheal smooth muscle and 2) these effects are independent of the regulation of MLC phosphorylation. Wiskott-Aldrich syndrome protein; actin-related protein; tracheal muscle; cytoskeleton  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号