首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The nucleotide sequence of a 1287-base-pair segment of the maize (Zea mays) chloroplast DNA, encoding chloroplast ribosomal proteins L14, S8 and the C-terminal part of L16, has been determined using the dideoxy-chain-termination method. These data from a monocot plant are compared to the corresponding data from a dicot and a lower plant and from two bacteria. The deduced amino acid sequence of maize chloroplast L14 shows 80%, 81%, 51% and 52% and that of S8 shows 75%, 58%, 39% and 38% sequence identity, respectively, to the corresponding sequences of Nicotiana tabacum, Marchantia polymorpha, Bacillus stearothermophilus and Escherichia coli. The starting map coordinates of rpL14 and rpS8 in the physical map of the maize chloroplast DNA [Larrinua, I. M., Muskavitch, K. M. T., Gubbins, E. J. and Bogorad, L. (1983) Plant Mol. Biol. 2, 129-140] are 31.330 and 31.841. The gene order is rpL16-spacer-rpL14-spacer-rpS8. Shine-Dalgarno sequences (GGA and AGGAGG) and computer-derived stem-loop structures of dyad symmetry are present in the spacers and the 3' downstream region of rpS8, respectively, but a chloroplast promoter-like sequence could not be detected suggesting that the latter might be located further upstream in this ribosomal protein gene cluster in maize chloroplast DNA.  相似文献   

3.
4.
The rpl33-rps18 gene cluster of the maize chloroplast genome has been mapped and sequenced. The derived amino acid sequence of the S18 protein shows a 7-fold repeat of a hydrophilic heptapeptide domain, S K Q P F R K, in the N-terminal region. Such a sequence is absent in the E. coli S18 and in the chloroplast S18 of the lower plant liverwort. In tobacco and rice chloroplast S18 it is present 2 and 6 times, respectively. Thus a long N-terminal repeat (resembling in composition the large C-terminal heptapeptide repeat in the eukaryotic pol II) appears to be characteristic of monocot cereal S18.  相似文献   

5.
6.
7.
8.
9.
We isolated a Zea mays cDNA encoding the 40S subunit cytoplasmic ribosomal protein S11. The nucleotide sequence was determined and the derived amino acid sequence compared to the corresponding Arabidopsis thaliana protein showing an homology of 90%. This ribosomal protein is encoded by a small multigene family of at least two members. The mRNA steady-state level is about one order of magnitude higher in rapidly growing parts of the plant such as the roots and shoots of seedlings compared to fully expanded leaf tissue.  相似文献   

10.
11.
12.
We have isolated and determined the nucleotide sequence of a cDNA encoding Xenopus laevis ribosomal protein S22. A synthetic S22 mRNA derived from this cDNA directs the synthesis of an in vitro translation product that is indistinguishable from S22 purified from Xenopus ovarian ribosomes. In vitro translated S22 is assembled into 40 S subunits when microinjected into the cytoplasm of oocytes. Analysis of the derived amino acid sequence indicates that Xenopus S22 is homologous to Escherichia coli ribosomal protein S10.  相似文献   

13.
14.
15.
S Chao  R Sederoff    C S Levings  rd 《Nucleic acids research》1984,12(16):6629-6644
The nucleotide sequence of the gene coding for the 18S ribosomal RNA of maize mitochondria has been determined and a model for the secondary structure is proposed. Dot matrix analysis has been used to compare the extent and distribution of sequence similarities of the entire maize mitochondrial 18S rRNA sequence with that of 15 other small subunit rRNA sequences. The mitochondrial gene shows great similarity to the eubacterial sequences and to the maize chloroplast, and less similarity to mitochondrial rRNA genes in animals and fungi. We propose that this similarity is due to a slow rate of nucleotide divergence in plant mtDNA compared to the mtDNA of animals. Sequence comparisons indicate that the evolution of the maize mitochondrial 18S, chloroplast 16S and nuclear 17S ribosomal genes have been essentially independent, in spite of evidence for DNA transfer between organelles and the nucleus.  相似文献   

16.
17.
The primary structure of the gene for 18 S rRNA of the crustacean Artemia salina was determined. The sequence has been aligned with 13 other small ribosomal subunit RNA sequences of eukaryotic, archaebacterial, eubacterial, chloroplastic and plant mitochondrial origin. Secondary structure models for these RNAs were derived on the basis of previously proposed models and additional comparative evidence found in the alignment. Although there is a general similarity in the secondary structure models for eukaryotes and prokaryotes, the evidence seems to indicate a different topology in a central area of the structures.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号