首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao J  Wei Z 《Bioelectromagnetics》2005,26(6):481-488
Experimental studies on effects of millimeter wave (MMW) exposure on cells cultured in Petri dishes have attracted interest in recent decades. To improve the quantification of the biological responses toward the MMW energy, an accurate and precise MMW dosimetry is to be provided. By using the finite difference time domain (FDTD) method, the numerical dosimetry is performed for a typical 35 mm Petri dish under 46 GHz continuous MMW exposure from an irradiator of a specified power pattern. With the aim of building a precise model, the meniscus at the interface between the culture solution and the Petri dish sidewall is taken into account, followed by the modeling of smooth edges of the Petri dish. The trilinear interpolation is introduced to assist the FDTD method to obtain a more precise dosimetric assessment. The specific absorption rate (SAR) distributions in the cornea cells covered by culture solution in the Petri dish are calculated and compared to display the effects of using Petri dish models of various precision and the trilinear interpolation on dosimetry results. In addition, the SAR distribution in the cells is analyzed to study its homogeneity. The results indicate that the precise Petri dish model and the application of the trilinear interpolation are helpful in improving the precision of numerical dosimetry. It is also revealed that the inhomogeneity of the SAR distribution is well beyond neglect, which deserves cautious consideration in experiments investigating MMW effects on cells in vitro.  相似文献   

2.
A head exposure setup for efficient and precisely defined exposure of human subjects equipped with a near‐infrared imaging (NIRI) sensor is presented. In a partially shielded anechoic chamber the subjects were exposed to Universal Mobile Telecommunications System (UMTS)‐like electromagnetic fields (EMF) by using a patch antenna at a distance of 4 cm from the head. The non‐contact design of the exposure setup enabled NIRI sensors to easily attach to the head. Moreover, different regions of the head were chosen for localised exposure and simultaneous NIRI investigation. The control software enabled the simple adaptation of the test parameters during exploratory testing as well as the performance of controlled, randomised, crossover and double‐blind provocation studies. Four different signals with a carrier frequency of 1900 MHz were chosen for the exposure: a simple continuous wave signal and three different UMTS signals. Furthermore, three exposure doses were available: sham, low (spatial peak specific absorption rate (SAR) = 0.18 W/kg averaged over 10 g) and high (spatial peak SAR = 1.8 W/kg averaged over 10 g). The SAR assessment was performed by measurement and simulation. Direct comparison of measurement and numerical results showed good agreement in terms of spatial peak SAR and SAR distribution. The variability analysis of the spatial peak SAR over 10 g was assessed by numerical simulations. Maximal deviations of ?22% and +32% from the nominal situation were observed. Compared to other exposure setups, the present setup allows for low exposure uncertainty, combined with high SAR efficiency, easy access for the NIRI sensor and minimal impairment of test subjects. Bioelectromagnetics 33:124–133, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Detailed and accurate dosimetric information is a basic precondition for acquiring adequate interpretations and valuations of in vivo studies testing radiofrequency (RF) electromagnetic fields (EMF). Instantaneous locally induced fields depend on many parameters, for example, orientation of the animal with respect to the incident field, animal size and posture, and tissue distribution. These parameters are often constrained, resulting in significant uncertainties in the dosimetric assessment of the exposure, averaged over all animals and the entire experimental phase, as well as in significant variations of the local exposures during the experiment. A sufficient analysis should therefore include (1) average and peak spatial specific absorption rate (SAR) values for the whole body and specific organs, (2) the uncertainty of each assessed SAR value, and (3) the short term and long term SAR variations between the tissues of individual animals. A methodology to obtain this pertinent information is developed and proposed in this paper. Using this methodology the dosimetry of a rat exposure apparatus operating at the carrier frequency of 1747 MHz, previously developed for a 2-year bioassay study within the European Union project PERFORM, was obtained. We have demonstrated that comprehensive dosimetric data can be obtained with reasonable effort using the proposed method, providing that the exposure setup is soundly formulated.  相似文献   

4.
A circulating water bath exposure system has been designed for in vitro radiofrequency radiation (RFR) exposure studies in the 915 to 2450 MHz range. A Styrofoam float, in which 10 T-25 plastic tissue culture flasks are embedded, is rotated at approximately 20 rpm in a Plexiglas water bath at a distance beneath a rectangular horn. The continuous circular rotation of the flasks is designed to "average out" the heterogeneity present in stationary flask exposures. The rotation also serves to prevent the establishment of chemical gradients in the medium within the flasks. Several factors have been demonstrated to affect the specific absorption rate (SAR) measured in the medium in the exposed flasks. These factors include: 1) the position of the exposure flasks relative to the long axis of the antenna horn; 2) whether the flasks are exposed while stationary or in rotation; 3) the volume of the medium contained in the flask; and 4) the depth in the medium in the flask at which temperatures for SAR calculation are measured. The presence of cells in the exposure flask (as attached monolayer or cell suspension) did not result in an SAR different from that measured in the same volume of medium without cells present.  相似文献   

5.
This paper presents the design of a resonant system for in vitro studies to emulate the exposure of a monolayer of cells to a wireless power transfer system operating at 13.56 MHz. The design procedure targets a system, which maximizes the specific absorption rate (SAR) uniformity on the plane where the layer is cultured, as well as SAR efficiency (defined as SAR over the input power), within the size constraints of a standard incubator. Three resonant wireless power transfer systems with different commonly used loop/coil geometries (cylindrical with circular and square cross-sections and annular) were compared with assess the configuration maximizing the considered design criteria. The system performance in terms of reflection and transmission coefficients, as well as generated E- and H-fields, was characterized numerically and experimentally inside the incubator. Moreover, SAR was computed at the monolayer level. The system equipped with cylindrical coils with square cross-sections led to a high electromagnetic field uniformity in in vitro biological samples. In particular, the uniformities in E and SAR at the layer level were within 7.9% and 5.5%, respectively. This was achieved with the variation in H below the usually considered ±5% limit. © 2020 Bioelectromagnetics Society  相似文献   

6.
Due to the expected mass deployment of millimeter‐wave wireless technologies, thresholds of potential millimeter‐wave‐induced biological and health effects should be carefully assessed. The main purpose of this study is to propose, optimize, and characterize a near‐field exposure configuration allowing illumination of cells in vitro at 60 GHz with power densities up to several tens of mW/cm2. Positioning of a tissue culture plate containing cells has been optimized in the near‐field of a standard horn antenna operating at 60 GHz. The optimal position corresponds to the maximal mean‐to‐peak specific absorption rate (SAR) ratio over the cell monolayer, allowing the achievement of power densities up to 50 mW/cm2 at least. Three complementary parameters have been determined and analyzed for the exposed cells, namely the power density, SAR, and temperature dynamics. The incident power density and SAR have been computed using the finite‐difference time‐domain (FDTD) method. The temperature dynamics at different locations inside the culture medium are measured and analyzed for various power densities. Local SAR, determined based on the initial rate of temperature rise, is in a good agreement with the computed SAR (maximal difference of 5%). For the optimized exposure setup configuration, 73% of cells are located within the ±3 dB region with respect to the average SAR. It is shown that under the considered exposure conditions, the maximal power density, local SAR, and temperature increments equal 57 mW/cm2, 1.4 kW/kg, and 6 °C, respectively, for the radiated power of 425 mW. Bioelectromagnetics 33:55–64, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
The meniscus is essential to the functioning of the knee, offering load support, congruency, lubrication, and protection to the underlying cartilage. Meniscus degeneration affects ∼35% of the population, and potentially leads to knee osteoarthritis. The etiology of meniscal degeneration remains to be elucidated, although many factors have been considered. However, the role of nutritional supply to meniscus cells in the pathogenesis of meniscus degeneration has been so far overlooked. Nutrients are delivered to meniscal cells through the surrounding synovial fluid and the blood vessels present in the outer region of the meniscus. During maturation, vascularization progressively recedes up to the outer 10% of the tissue, leaving the majority avascular. It has been hypothesized that vascular recession might significantly reduce the nutrient supply to cells, thus contributing to meniscus degeneration. The objective of this study was to evaluate the effect of vascular recession on nutrient levels available to meniscus cells. This was done by developing a novel computational model for meniscus homeostasis based on mixture theory. It was found that transvascular transport of nutrients in the vascularized region of the meniscus contributes to more than 40% of the glucose content in the core of the tissue. However, vascular recession does not significantly alter nutrient levels in the meniscus, reducing at most 5% of the nutrient content in the central portion of the tissue. Therefore, our analysis suggests that reduced vascularity is not likely a primary initiating source in tissue degeneration. However, it does feasibly play a key role in inability for self-repair, as seen clinically.  相似文献   

8.
The main objective of this paper is to carefully study the fields induced in flasks exposed to RF electromagnetic fields. The study focuses on the widely used 60 mm Petri dishes and rectangular T-75 flasks for the two following cases: 1) cells in homogeneous suspension and 2) cell monolayers. The dependence of the coupling and the homogeneity of the SAR distribution on frequency (0.7 GHz to 2.5 GHz), polarization (E, H and k polarizations) and the amount of medium (1.9 mm to 4.7 mm medium height) is studied. In addition, the effects of the environment, meniscus and field impedance as well as the distortion of the incident field are discussed. Based on these results, advantages and disadvantages of different fundamental designs of apparatus used in the past are compared. These are TEM cells, HF chambers, radial transmission lines (RTL), waveguides and wire patch cells. Furthermore, the major optimization parameters are identified for the development of highly optimized exposure systems, enabling the conduct of high quality experiments.  相似文献   

9.
In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom.  相似文献   

10.
To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.  相似文献   

11.
Human meniscus cells have a predominantly fibrogenic pattern of gene expression, but like chondrocytes they proliferate in monolayer culture and lose the expression of type II collagen. We have investigated the potential of human meniscus cells, which were expanded with or without fibroblast growth factor 2 (FGF2), to produce matrix in three-dimensional cell aggregate cultures with a chondrogenic medium at low (5%) and normal (20%) oxygen tension. The presence of FGF2 during the expansion of meniscus cells enhanced the re-expression of type II collagen 200-fold in subsequent three-dimensional cell aggregate cultures. This was increased further (400-fold) by culture in 5% oxygen. Cell aggregates of FGF2-expanded meniscus cells accumulated more proteoglycan (total glycosaminoglycan) over 14 days and deposited a collagen II-rich matrix. The gene expression of matrix-associated proteoglycans (biglycan and fibromodulin) was also increased by FGF2 and hypoxia. Meniscus cells after expansion in monolayer can therefore respond to chondrogenic signals, and this is enhanced by FGF2 during expansion and low oxygen tension during aggregate cultures.  相似文献   

12.
Proflavin and microwave radiation: absence of a mutagenic interaction   总被引:3,自引:0,他引:3  
The potential ability of radiofrequency electromagnetic radiation (RFR) in the microwave range to induce mutagenesis, chromosomal aberrations, and sister chromatid exchanges in mammalian cells is being explored in our laboratories. In addition, we have also been examining the ability of simultaneous exposure to RFR and chemical mutagens to alter the genotoxic damage induced by chemical mutagens acting alone. We have performed experiments to determine whether there is an interaction between 2.45-GHz, pulsed-wave, RFR and proflavin, a DNA-intercalating drug. The endpoint studied was forward mutation at the thymidine kinase locus in L5178Y mouse leukemic cells. Any effect on the size distribution of the resulting colonies of mutated cells was also examined. The exposures were performed at net forward powers of 500 or 600 W, resulting in a specific absorption rate (SAR) of approximately 40 W/kg. The culture-medium temperature reached a 3 degrees C maximal increase during the 4-h exposure; appropriate 37 degrees C and convection-heating temperature controls (TC) were performed. In no case was there any indication of a statistically significant increase in the induced mutant frequency due to the simultaneous exposure to RFR and proflavin, as compared with the proflavin exposures alone. There was also no indication of any change in the colony-size distribution of the resulting mutant colonies, neither, and there was no evidence in these experiments of any mutagenic action by the RFR exposure alone.  相似文献   

13.
The energy deposition in the nucleus of cells exposed to the 10B(n, alpha)7Li neutron capture reaction has been calculated and compared to the measured biological effect of this reaction. It was found that a considerable distribution of hit sizes to the nucleus occurs. The comparison of hit size frequency with the observed survival indicates that not every hit, independent of its size, can lead to cell death. This implies the existence of a hit size effectiveness function. The analysis shows that the location of boron relative to the radiation-sensitive volume of the cell is of great importance and that average dose values alone are of limited use for predicting the biological effect of this reaction. Boron accumulating in the cell nucleus is much more efficient in cell killing than the same amount of boron uniformly distributed; its presence in one cell, however, has little effect on its neighboring cells in a tissue. When boron is present on the cell surface of a tissue (as presumably delivered by antibodies), its cell-killing effect is greatly reduced compared to that in uniform distribution. However, in this case much of the dose to one cell comes from neutron capture reactions occurring on the surface of its neighbor cells. These data have implications for the choice of boron carries in neutron capture therapy. The mathematical analysis carried out here is similar to that proposed recently for low-level exposure effects of radiation, taking mutation and/or carcinogenesis as biological effects. The results here show that high-level exposure to high-LET particles (resulting in cell killing) should be treated in an analogous manner.  相似文献   

14.
15.
Although in vitro studies have been previously conducted to determine the biological effects of radio frequency (RF) radiation, it has not yet been determined whether or not RF radiation poses a potential hazard. This study was conducted to determine whether RF radiation exposure exerts detectable effects on cell cycle distribution, cellular invasion, and migration. NIH3T3 mouse fibroblasts were exposed to 849 MHz of RF radiation at average SAR values of 2 or 10 W/kg for either 1 h, or for 1 h per day for 3 days. During the exposure period, the temperature in the exposure chamber was maintained isothermally by circulating water throughout the cavity. Cell cycle distribution was analyzed at 24 and 48 h after exposure, by flow cytometry. We detected no statistically significant differences between the sham-exposed and RF radiation-exposed cells. Cellular invasion and migration were assessed by in vitro Matrigel invasion and Transwell migration assays. The RF radiation-exposed groups evidenced no significant changes in motility and invasiveness compared to the sham-exposed group. However, the ionizing radiation-exposed cells, used as a positive control group, manifested dramatic alterations in their cell cycle distribution, cellular invasiveness, and migration characteristics. Our results show that 849 MHz RF radiation exposure exerts no detectable effects on cell cycle distribution, cellular migration, or invasion at average SAR values of 2 or 10 W/kg.  相似文献   

16.
暴露评估中样本采集量的模拟研究   总被引:1,自引:0,他引:1  
选择暴露评估常用的4种右偏分布,就评估关注的高百分位数估计与采样量的关系进行模拟研究;又以对数正态分布为代表,从分布形态和变异的角度做了细致探讨.结果表明:(1)对右偏分布来说,百分位数越高,准确估计所需的采样容量就越大.而其估计值都随采样量的增大而趋近理论值,精度也随之增大,采样量500时,本文考察的4种右偏分布除P99.9外的其它百分位数都得到了较为准确的估计.(2)估计相同的百分位数,对数正态分布所需的样本容量要比正态分布大得多;而其分布变异越大,所需的采样量也就越大.本研究可为暴露评估中数据的采样调查提供借鉴.  相似文献   

17.
The distribution of two sulines of L cells, differing in adhesive properties (monolayer and suspension cultures), have been investigated using polymer two-phase system dextran-500-polyenthylenglycol-600. By counter-current distribution it has been shown that most of the cells growing in monolayer have low coefficients of partition, unlike cells grown in suspension having a high coefficient of partition. It is supposed that differences revealed in properties of the cell surface may be associated with the ability of cells to form adhesive contacts.  相似文献   

18.
A new head exposure system for double blinded human provocation studies, which requires EEG recording during exposure with GSM900- and UMTS-like signals has been developed and dosimetrically evaluated. The system uses planar patch antennas fixed at 65 mm distance from the subject's head by a special headset, which provides minimum impairment of the test subjects and ensures an almost constant position of the antennas with respect to the head, even in case of head movements. Compared to exposure concepts operating small antennas in close proximity to the head, the concept of planar antennas at a certain distance from the head produces a much more homogeneous SAR distribution in the temporal and parietal lobe of the brain. At the same time the resulting uncertainty of exposure due to variations in head size, variations of the dielectric properties of tissues and unavoidable small changes of the antenna's position with respect to the head, is reduced to the order of approximately 3 dB, which is a significant improvement to comparable head exposure systems reported in literature in the past. To avoid electromagnetic interference on the EEG recording caused by the incident RF-field an appropriate double-shielded filter circuit has been developed. Furthermore, the effect of the presence of the sintered Ag/AgCl EEG electrodes and electrode wires on the SAR distribution inside the head has been investigated and was found to be minimal if the electrode wires are arranged orthogonal to the incident electric field vector. EEG electrode arrangement parallel to the incident field vector, however, might cause drastic changes in the SAR distribution inside the head.  相似文献   

19.
Many investigators are currently studying the use of decellularized tissue allografts from human cadavers as scaffolds onto which patients?? cells could be seeded, or as carriers for genetically engineered cells to aid cell transplantation. However, it is difficult to seed cells onto very dense regular connective tissue which has few interstitial spaces. Here, we discuss the development of a chemotactic cell seeding technique using solvent-preserved human meniscus. A chemokinetic response to recombinant human bone morphogenetic protein-2 (rhBMP-2) was observed in a monolayer culture of primary chondrocytes derived from femoral epiphyseal cartilage of 2-day-old rats. The rhBMP-2 significantly increased their migration upto 10 ng/ml in a dose-dependent manner. When tested with solvent-preserved human meniscus as a scaffold, which has few interstitial spaces, rhBMP-2 was able to induce chondrocytes to migrate into the meniscus. After a 3-week incubation, newly-formed cartilaginous extracellular matrix was synthesized by migrated chondrocytes throughout the meniscus, down to a depth of 3 mm. These findings demonstrate that rhBMP-2 may be a natural chemokinetic factor in vivo, which induces migration of proliferative chondrocytes into the narrow interfibrous spaces. Our results suggest a potential application of rhBMP-2 for the designed distribution of chondrocytes into a scaffold to be used for tissue engineering.  相似文献   

20.
A novel exposure facility for exposing cell monolayers to centimeter and millimeter waves (18–40.5 GHz) used by future 5G mobile communication technology and similar applications has been developed. A detailed dosimetric characterization of the apparatus for frequencies of 27 and 40.5 GHz and 60 mm petri dishes, used in a presently ongoing study on human dermal fibroblasts and keratinocytes, was carried out. The exposure facility enables a well-defined, randomized, and blinded application of sham exposure and exposure with selectable values of incident power flux density, and additionally provides the possibility of continuous monitoring of the sample temperature during exposure while it does not require significant deviations from routine in vitro handling procedures, i.e. petri dishes are not required to be placed inside waveguides or TEM cells. Mean specific absorption rate (SAR) values inside the cell monolayer of 115 W/kg (27 GHz) and 160 W/kg (40.5 GHz) per watt antenna input power and corresponding transmitted power density (St) values at the bottom of the cell monolayer of 65 W/m2 (27 GHz) and 70 W/m2 (40.5 GHz) per watt antenna input power can be achieved, respectively. For reasonable amounts of harvested cells (80% of petri dish bottom area), the variation (max/min) of SAR and St over the cell monolayer remains below 3.7 dB (27 GHz) and 3.0 dB (40.5 GHz), respectively. © 2021 Bioelectromagnetics Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号