首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the influence of nutrients on the growth characteristics of the dominant dinoflagellates, Ceratium furca and Ceratium fusus, in the temperate coastal area of Sagami Bay, Japan, we conducted field monitoring from January 2000 to December 2005 and performed laboratory culture experiments. In the field study, population densities of C. furca and C. fusus were high, even in low nutrient concentrations (N: 1.58 μM, P: 0.17 μM). Both species were more abundant in the surface and sub-surface layers than in the bottom layers during the stratification periods. In the laboratory study, the specific growth rates of C. furca and C. fusus increased gradually along with increasing nutrients up to the T5 (N: 5 μM, P: 0.5 μM) and T10 (N: 10 μM, P: 1 μM) concentration levels, after which the growth rate plateaued at the T50 (N: 50 μM, P: 5 μM) concentration level. In contrast, the nutrient uptake rates of both species continuously increased, indicating “luxury consumption”, i.e., excessive cellular storage not related to growth rate. The half-saturation constants (Ks) of C. furca for nitrate (0.49 μM) and phosphate (0.05 μM) were slightly higher than C. fusus (0.32 and 0.03 μM, respectively). We offer two reasons why the two Ceratium population densities were maintained at high levels in low nutrient conditions. First, these two species have a competitive advantage over other algal species because of low Ks values and specific characteristics for nutrient uptake such as luxury consumption. Their ability to obtain nutrients through alternative methods, such as phagotrophy, might contribute to bloom formation and population persistence. Second, the cell densities of both Ceratium species increased along with nitrate concentrations in the media even when phosphorus was held constant. In particular, the growth of C. furca was directly supported by various nitrogen sources such as nitrate, ammonium, and urea, although the highest growth rates were observed only in the nitrate-enriched cultures. Our field and laboratory results revealed that the growth rates of the two Ceratium species increased readily in high N:P nutrient conditions (i.e., conditions of P limitation) indicating an advantage over other algal species in phosphorus-limited environments such as Sagami Bay.  相似文献   

2.
在高纬度高海拔区域气温增幅更大的背景下,高山亚高山森林土壤有机碳稳定性组分分配比关系以及由于此差异导致对增温的反馈效应均有待深入阐释。天山森林是以雪岭云杉(Picea Schrenkiana)为单优树种的温带针叶林,在天山北坡中山带(海拔约1760—2800 m)呈垂直落差超过1000 m的带状斑块分布,便于排除混交树种的影响,而量化土壤有机碳库稳定性组分分配比关系沿海拔的分异规律,及其对气候变化的响应情况。沿海拔梯度设置森林样地并分层采集土样,研究各土层土壤总有机碳库(CSOC)、活性碳库(Ca)、缓效性碳库(Cs)、惰性碳库(Cp)、微生物量碳(MBC)在海拔梯度上的变化特征,通过碳库活度(A)、碳库活度指数(AI)、碳库指数(CPI)、土壤碳密度(SOCD),探讨天山森林土壤有机碳稳定性组分沿海拔的分异特征。结果表明:(1)随着海拔的升高,天山中段北坡云杉森林土壤Ca占比逐步升高,Cs和Cp占比逐步降低,这意味着天山中段北坡云杉...  相似文献   

3.
Allelopathy has been regarded as a mechanism for successful exotic plant invasion. However, it is not clear if and what effects of allelopathic substances may exert on soil nutrient. The exotic plant Mikania micrantha H.B.K. (M. micrantha) has invaded many forests in south China, and recent studies have suggested it has allelopathic potential for other plants and soil microbial community. Thus, we hypothesized that M. micrantha could influence soil nutrients and N transformation through allelopathy. We measured total C and N, NO3 , NH4 + and pH of the soil beneath M. micrantha and the adjacent open soil, and then measured the above soil properties after treating soil with 3 concentrations of aqueous extracts of M. micrantha (T1: 0.005 g ml−1; T2: 0.025 g ml−1; T3: 0.100 g ml−1). In addition, a bioassay was conducted to determine the allelopathic potential of the soil beneath M. micrantha. The results showed that M. micrantha significantly affected soil nutrients and N transformation. Soil beneath M. micrantha had inhibitory effects on seed germination and seedling growth of test plant, and had significantly higher C, N, ammonia, net nitrification rate than those of open soil. The plant extracts decreased soil pH, and T1 decreased it the most, and it increased soil C and N, and T1 represented the greatest increase in both C and N. The extracts also increased both NO3 and NH4 + in soil, whereas no significant difference existed among the 3 extract treatments. Compared to the water control, the soil net mineralization rate was higher under T1, while lower under T2 and T3. However, the extracts increased the soil nitrification rates under all the treatments (T1, T2 and T3). Our results suggest that the water soluble allelochemicals of M. micrantha improve soil nutrient availability, through which the invasive plant M. micrantha may successfully invade and establish in new habitats.  相似文献   

4.
Wilcke  W.  Lilienfein  J. 《Plant and Soil》2004,258(1):31-41
Conversion of native savanna in Brazil, the Cerrado, to agri- and silvicultural land use causes changes in metal storages of the ecosystems. To evaluate the sustainability of land use these changes have to be known. Therefore, we examined the Al, Ca, Fe, K, Mg, Mn, Na, and Zn storages in above- and belowground biomass, the organic layer, and the top 2 m of the mineral soil (Anionic Acrustoxes) of three replicate plots in each of six native and land-use systems. The systems were native Cerrado, Pinus caribaea Morelet plantations, productive and degraded Brachiaria decumbens Stapf pastures, and conventional and no-tillage soybean cultivation. The total metal storage varied little among the studied systems except for Ca, K, and Mg. All land-use systems had larger Ca storages (cropping systems 202–205 g m–2, productive pasture: 112, degraded pasture: 84, Pinus: 81) than the Cerrado (62 g m–2). The K storage was smaller in the pastures (17–18 g m–2) than in Cerrado and Pinus stands (22–24) and largest in the cropping systems (26). The Mg storages were largest in the cropping systems (65–69) and productive pasture (59 g m–2); those in the Pinus stands (52), the degraded pasture (51), and the Cerrado (53) were similar. For most metals, the aboveground biomass contained up to 1% of the total storage including the top 2 m of the soil (<5% if the lower ecosystem boundary was set at 0.3 m soil depth). However, the aboveground biomass stored up to 12% of Ca, K, and Mg down to 2 m soil depth (41% if the lower ecosystem boundary was set at 0.3 m soil depth). In the Pinus stands, the storage of most metals was larger in the below- than in the aboveground biomass; for the other systems the reverse was true. Metal storages in soil were little affected by land use except that liming resulted in increased Ca and Mg storages in the topsoil. The comparison between known inputs of Ca, K, and Mg and mean annual change rates of their storages revealed that there were considerable base metal losses by leaching, grazing, and removal with the harvest. After 12–20 years, the land-use impact on metal storages is restricted to Ca, Mg, and K. Generally, all land-use systems tend to be richer in these nutrients except for the significant depletion in K of the pastures.  相似文献   

5.
Aim In an effort to disentangle the ecological processes that confine ectotherms to alpine environments, we studied the thermoregulatory and microhabitat selection behaviours of the rock lizard Iberolacerta cyreni, which is endemic to some mountains of central Spain, and of the wall lizard Podarcis muralis, which is a potential competitor of rock lizards. Location We chose three areas in the Sierra de Guadarrama (central Spain) that differed in their thermal quality [mean deviation of environmental operative temperatures from the lizards’ preferred thermal range (PTR)] and refuge availability: a pine forest (1770 m a.s.l.) in which P. muralis was the only species found, and two mixed shrub and rock sites (1770 and 1900 m a.s.l.) where both species were present. Methods In the field we collected data on refuge availability, sun exposure, body temperature (Tb) and operative temperature (Te). Thus, we estimated the thermal habitat quality of the areas sampled and the thermoregulation accuracy and effectiveness of both species. Results The pine forest had the lowest thermal quality and refuge availability. The lower‐elevation shrub site offered the best thermal quality, but refuges were much scarcer than at the higher‐elevation site. Both species thermoregulated accurately, because mean deviations of body temperature (Tb) from PTR were considerably smaller than those of Te. Podarcis muralis had higher Tb values than did I. cyreni, which had similar Tb values at both shrub sites, whereas P. muralis had lower Tb values at higher elevation. Overall, the thermoregulatory effectiveness (extent to which Tb values are closer to the PTR than are Te values) of both species was similar, but whereas I. cyreni thermoregulated more efficiently at higher elevation, the opposite was true for P. muralis. At the lower‐elevation shrub site, I. cyreni remained closer to refuges than did P. muralis. Main conclusions Our results suggest that the pine forest belt might prevent the expansion of rock lizards towards lower elevations as a result of its low thermal quality and scarcity of refuges, that the thermoregulatory effectiveness of rock lizards in alpine environments depends more on refuge availability than on thermal habitat quality, and that competition with wall lizards is unlikely to explain either the distribution or the thermoregulatory effectiveness of rock lizards.  相似文献   

6.
In this work, we derive an analytical expression for the relaxation time τ as a function of temperature T for myoglobin protein (Mb, PDB:1MBN) in the high temperature limit (T > Tg = 200 K). The method is based on a modified version of the Adam–Gibbs theory (AG theory) for the glass transition in supercooled liquids and an implementation of differential geometry techniques. This modified version of the AG theory takes into account that the entropic component in protein's denaturation has two major sources: a configurational contribution ΔSc due to the unfolding of the highly ordered native state N and a hydration contribution ΔShyd arising from the exposure of non-polar residues to direct contact with solvent polar molecules. Our results show that the configurational contribution ΔSc is temperature-independent and one order of magnitude smaller than its hydration counterpart ΔShyd in the temperature range considered. The profile obtained for log τ(T) from T = 200 K to T = 300 K exhibits a non-Arrhenius behavior characteristic of α relaxation mechanisms in hydrated proteins and glassy systems. This result is in agreement with recent dielectric spectroscopy data obtained for hydrated myoglobin, where at least two fast relaxation processes in the high temperature limit have been observed. The connection between the relaxation process calculated here and the experimental results is outlined.  相似文献   

7.
The mountain hare (Lepus timidus) is a year-round active herbivore adapted to survive the boreal winter. Captive mountain hares (N = 4) were implanted with intraabdominal thermosensitive loggers to record their core body temperature (Tb) for a year and during food deprivation (8–48 h) in summer and winter. The average Tb was 38.7 ± 0.01 °C in summer and 38.3 ± 0.01 °C in winter. The yearly Tb correlated positively with the ambient temperature. The 24-h Tb was the highest from late scotophase to early photophase in summer and winter and the lowest during middle-late photophase in summer or during early-middle scotophase in winter. The range of the 24-h oscillations in Tb increased in three animals in winter. Food deprivation did not induce hypothermia in summer or winter. These preliminary data suggest that the mountain hare can spare a modest amount of energy with the wintertime reduction in Tb.  相似文献   

8.
Soil cover, which is one of the most informative and integrative landscape factors, can be used for the analysis of landscape patterns. We studied the spatial autocorrelation (Moran's I) of raster format soil maps (1:10,000; 10 m pixel size) in 35 study areas representing all landscape regions in Estonia. The carbonate concentration of soils, volumetric soil moisture (%) and the depth of the groundwater table were taken into consideration in compiling a scale of contrast of 17 soil groups. We introduce a simple characteristic based on spatial correlograms: a half-value distance lag, hI = 0.5—a distance where Moran's I drops below 0.5. Spatial autocorrelation decreased very rapidly in the case of heights with a very heterogeneous landscape composition, showing low values of hI = 0.5 (<100 m in all 6 study areas). In uplands and depressions, the spatial autocorrelation also decreased relatively rapidly (hI = 0.5 < 200 m). In most of the plains, coastal lowlands, sea islands and inland paludified lowlands, the values of Moran's I did decrease slowly with increasing lag, being >200 m in all forest and bog areas with complex topographical conditions due to the variety of glacial landforms and peatlands. All of the eight FRAGSTATS landscape metrics studied demonstrated significant correlations with hI = 0.5, whereas five of them – Contrast Weighted Edge Density (CWED); Percentage of Like Adjacencies (PLADJ), Edge Density (ED), Patch Density (PD) and Mean Patch Area Distribution (AREA_MN) – had Spearman Rank Order Correlation values higher than 0.8. Landscapes with high ED, PD, and CWED values have a low autocorrelation: PD, ED, and CWED correlated negatively with hI = 0.5. PD, ED, and CWED decreased and PLADJ increased with the power-law relationship with increasing hI = 0.5. Spatial autocorrelation is lower in landscapes with complex structure and high contrast. The positive relationship with PLADJ indicates the same. Thus, spatial correlograms of potential landscape structure based on soil cover analysis can be used for the characterization of human-influenced landscape (land use) structure.  相似文献   

9.
Priming is a technique used to improve seedling establishment of direct-seeded crops such as onion and carrot, resulting in a quick and uniform emergence. This work investigated the application of four selected beneficial microorganisms (Pseudomonas chlororaphis MA342, Pseudomonas fluorescens CHA0, Clonostachys rosea IK726d11 and Trichoderma harzianum T22) to onion and carrot seed during drum priming, and their subsequent survival and establishment in the rhizosphere once the seed was planted. Different application rates of fungi (7 log10 cfu g−1 dry seed) and bacteria (6 log10 cfu g−1 dry seed) were required on onion to achieve the end target of 5 log10 cfu g−1 dry seed, whereas a lower rate (5 log10 cfu g−1 dry seed for both bacteria and fungi) was successful on carrot. Microorganism-treated seed was planted in soil in the glasshouse and root and rhizosphere soil samples were taken at 2, 4 and 8 weeks post-planting. All seed-applied microorganisms were recovered throughout the experiment, although differences in the survival patterns were seen. The bacterial isolates declined in number over time, with P. fluorescens CHA0 showing better overall survival than P. chlororaphis MA342, particularly on the roots and in the rhizosphere soil of carrot. In contrast to the bacteria, the fungal isolate C. rosea IK726d11 showed good survival on both onion and carrot, and increased significantly in number throughout the 8-week period. Trichoderma harzianum T22 remained relatively constant in number throughout the experiment, but showed better survival on carrot than onion roots. Similar results were found in three different soil-types.  相似文献   

10.
Efforts were made to evaluate the decomposition potentials of traditional monoculture and some novel polyculture vermireactors. Three earthworm species, i.e. Eisenia fetida (E. f.), Perionyx excavatus (P. ex.) and Lampito mauritii (L. m.), representing two different ecological categories: epigeic (E. fetida and P. excavatus) and anecic (L. mauritii), were used to design seven different vermireactors, i.e. Mono-(E. f.), Mono-(P. ex.), Mono-(L. m.), Poly-(E. f. + P. ex.), Poly-(P. ex. + L. m.), Poly-(E. f. + L. m.) and Poly-(E. f. + P. ex. + L. m.). The microbial load of vermireactors was evaluated through measuring dehydrogenises activities (DH-ase) and microbial biomass-N, while mineralization rate was measured in respect to changed level of some important nutrients in vermicomposted substrate. The vermicomposting caused decrease in pH (67.0–15.0%), organic C (46.1–28.4%) and C:N ratio (72.2–57.1%) and increase in total N (137.7–67.8%) as well as available P (107.9–16.9%) contents, at the end. The carbon and nitrogen mineralization rate showed the order: Poly-(E. f. + P. ex. + L. m.) > Poly-(E. f. + L. m.) > Poly-(P. ex. + L. m.) > Poly-(E. f. + P. ex.) > Mono-(E. f.) > Mono-(P. ex.) > Mono-(L. m.) for this study. The Poly-(E. f. + P. ex. + L. m.) vermireactor showed the maximum level of DH-ase activity 1926 ± 245 μg g−1 substrate 24 h as well as microbial biomass-N 3059.1 ± 242.3 mg N g−1 substrate, during experimentation. This study clearly suggests that burrowing earthworms in vermireactor not only promote the microbial colonization, but at the same time also accelerate the mineralization rate in decomposing waste. The polyculture vermicomposting, using burrowing earthworms with epigeics, could be more efficient than traditional monoculture vermireactors to decompose organic waste resources.  相似文献   

11.
Impacts of municipal effluent (ME) irrigation on soil physicochemical properties and its remediation by tree species were assessed with a view to utilize this resource in growing woodlot, controlling land degradation and improving environmental quality in suburban areas. Acacia nilotica L. (babool), Dalbergia sissoo L. (sissoo) and Eucalyptus camaldulensis seedlings planted in July 1998 were irrigated with ME at ½ PET (T2), 1 PET (T3), 2 PET (T4), and with canal water at 1 PET (T5). The control was soil without seedlings irrigated with ME at 1 PET (T1). Application of ME increased minerals concentration from T2 to T4 in both soil and seedling in June 1999 and 2000. The increase in soil pH, EC, SOC was by <2.00-fold and availability of potassium (K), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) by >2-fold, NH4–N by 10.44-fold and PO4–P by 6.57-fold in T4 than those in T5 treatment in 2000. Available NH4–N, PO4–P, Mg and K were higher in 0–15 cm soil layer but continued irrigation and low soil carbon influenced leaching of NO3–N, Na, Cu, Fe, Mn and Zn resulting their higher concentrations in 60–90 cm soil layer (P < 0.01). Lower soil nutrients in T3 than in T1 suggested soil amelioration by the planted seedlings and because of lowest concentration of most of the nutrients E. camaldlensis showed highest soil amelioration capacity. But nutrient utilization efficiency was highest in A. nilotica for K, Ca, Mg, Na, Fe, Cu and Zn, D. sissoo for N and P, and E. camaldulensis for Mn. Thus, planting tree seedlings, particularly E. camaldulensis, under ecological amelioration could in this way help in controlling land degradation and enhancing biomass and aesthetic benefits, although long-term application of effluent would lead to mineral/salt accumulation in soil and plants.  相似文献   

12.
In Mediterranean environments, gully erosion is responsible for large soil losses. It has since long been recognized that slopes under vegetation are much more resistant to soil erosion processes compared to bare soils and improve slope stability. Planting or preserving vegetation in areas vulnerable to erosion is therefore considered to be a very effective soil erosion control measure. Re-vegetation strategies for erosion control rely in most cases on the effects of the above-ground biomass in reducing water erosion rates, whereas the role of the below-ground biomass is often neglected or underestimated. While the above-ground biomass can temporally disappear in semi-arid environments, roots may still be present underground and play an important role in protecting the topsoil from being eroded. In order to evaluate the potential of plant species growing in Mediterranean environments to prevent shallow mass movements on gully or terrace walls, the root reinforcement effect of 25 typical Mediterranean matorral species (i.e. shrubs, grasses herbs, small trees) was assessed, using the simple perpendicular model of Wu et al. (Can Geotech J 16:19–33, 1979). As little information is available on Mediterranean plant root characteristics, root distribution data were collected in SE-Spain and root tensile strength tests were conducted in the laboratory. The power root tensile strength–root diameter relationships depend on plant species. The results show that the shrubs Salsola genistoides Juss. Ex Poir. and Atriplex halimus L. have the strongest roots, followed by the grass Brachypodium retusum (Pers.) Beauv. The shrubs Nerium oleander L. and the grass Avenula bromoides (Gouan) H. Scholz have the weakest roots in tension. Root area ratio for the 0–0.1 m topsoil ranges from 0.08% for the grass Piptatherum miliaceum (L.) Coss to 0.8% for the tree Tamarix canariensis Willd. The rush Juncus acutus L. provides the maximum soil reinforcement to the topsoil by its roots (i.e. 304 kPa). Grasses also increase soil shear strength significantly (up to 244 kPa in the 0–0.1 m topsoil for Brachypodium retusum (Pers.) Beauv.). The shrubs Retama sphaerocarpa (L.) Boiss. and Anthyllis cytisoides L. are increasing soil shear strength to a large extent as well (up to 134 and 160 kPa respectively in the 0–0.10 m topsoil). Whereas grasses and the rush Juncus acutus L. increase soil shear strength in the topsoil (0–0.10 m) to a large extent, the shrubs Anthyllis cytisoides (L.), Retama sphaerocarpa (L.) Boiss., Salsola genistoides Juss. Ex Poir. and Atriplex halimus L. strongly reinforce the soil to a greater depth (0–0.5 m). As other studies reported that Wu’s model overestimates root cohesion values, reported root cohesion values in this study are maximum values. Nevertheless, the calculated cohesion values are used to rank species according to their potential to reinforce the soil.  相似文献   

13.
Sparse Ulmus pumila woodlands play an important role in contributing to ecosystem function in semi-arid grassland of northern China. To understand the key attributes of soil carbon cycling in U. pumila woodland, we studied dynamics of soil respiration in the canopy field (i.e., the projected crown cover area) and the open field at locations differing in distance (i.e., at 1–1.5, 3–4, 10, and >15 m) to tree stems from July through September of 2005, and measured soil biotic factors (e.g., fine root mass, soil microbial biomass, and activity) and abiotic factors [e.g., soil water content (SWC) and organic carbon] in mid-August. Soil respiration was further separated into root component and microbial component at the end of the field measurement in September. Results showed that soil respiration had a significant exponent relationship with soil temperature at 10-cm depth. The temperature sensitivity index of soil respiration, Q 10, was lower than the global average of 2.0, and declined significantly (P < 0.05) with distance. The rate of soil respiration was generally greater in the canopy field than in the open field; monthly mean of soil respiration was 305.5–730.8 mg CO2 m−2 h−1 in the canopy field and 299.6–443.1 mg CO2 m−2 h−1 in the open field from July through September; basal soil respiration at 10°C declined with distance, and varied from ~250 mg CO2 m−2 h−1 near tree stems to <200 mg CO2 m−2 h−1 in the open field. Variations in soil respiration with distance were consistent with patterns of SWC, fine root mass, microbial biomass and activities. Regression analysis indicated that soil respiration was tightly coupled with microbial respiration and only weakly related to root respiration. Overall, variations in SWC, soil nutrients, microbial biomass, and microbial activity are largely responsible for the spatial heterogeneity of soil respiration in this semi-arid U. pumila woodland.  相似文献   

14.
Camarero  J.J.  Gutiérrez  E. 《Plant Ecology》2002,162(2):247-257
We describe the structure of two contrasting (elevation, topography,climate, vegetation, soil) alpine forest–pasture ecotones located in theCentral Pyrenees (sites Ordesa, O, and Tessó, T). We define ecotonestructure as the spatial distribution of trees of different size classes andgrowth-forms and the relationship between these aspects and the spatialdistribution of understory vegetation and substrate. The studied ecotones aredominated by Pinus uncinata Ram. and have been littleaffected by anthropogenic disturbances (logging, grazing) during this century.One rectangular plot (30 × 140 m) was located within eachsite with its longest side parallel to the slope and encompassing treeline andtimberline. The distribution of size and growth-form classes at site O followeda clear sequence of increasing size downslope from shrubby multistemmedkrummholz individuals to bigger arborescent trees. At site O, regeneration wasconcentrated near the krummholz area and over rocky substrates. This suggeststhat krummholz may modify microenvironment conditions and increase seedlingsurvival. At site T, regeneration was abundant above the treeline where thecover of the dominant understory shrub (Rhododendronferrugineum) decreased. In both ecotones the diversity of plants washigher above the treeline than in the forest and decreased going downslopecoinciding with the increase of P. uncinata cover. Thereduction of plant diversity appeared above the current timberline. At site O,the decrease was steep and spatially heterogeneous what may be due in part tothe edaphic heterogeneity. At site T the change was abrupt though smaller. Therelationships between the plant community and tree regeneration should be takeninto account in future ecological studies of treeline pattern.  相似文献   

15.
The Delaware Inland Bays (DIB) have experienced harmful algal blooms of dinoflagellates and raphidophytes in recent years. We used quantitative polymerase chain reaction (QPCR) techniques to investigate the community dynamics of three DIB dinoflagellates (Karlodinium veneficum, Gyrodinium instriatum, and Prorocentrum minimum) and one raphidophyte (Heterosigma akashiwo) at a single site in the DIB (IR-32) in summer 2006 relative to salinity, temperature and nutrient concentrations. We also carried out complementary laboratory culture studies. New primers and probes were developed and validated for the 18S rRNA genes in the three dinoflagellates. K. veneficum, H. akashiwo, and G. instriatum were present in almost all samples throughout the summer of 2006. In contrast, P. minimum was undetectable in late June through September, when temperatures ranged from 20 to 30 °C (average 25.7 °C). Dissolved nutrients ranged from 0.1 to 2.8 μM PO43− (median = 0.3 μM), 0.7–30.2 μM NOx (median = 12.9 μM), and 0–19.4 μM NH4+ (median = 0.7 μM). Dissolved N:P ratios covered a wide range from 2.6 to 177, with a median of 40. There was considerable variability in occurrence of the four species versus nutrients, but in general P. minimum and H. akashiwo were most abundant at higher (>40) N:P ratios and dissolved nitrogen concentrations, while K. veneficum and G. instriatum were most abundant at low dissolved N:P ratios (<20) and dissolved nitrogen concentrations < 10 μM. The semi-continuous laboratory competition experiment used mixed cultures of K. veneficum, P. minimum, and H. akashiwo grown at dissolved N:P ratios of 5, 16, and 25. At an N:P of 16 and 25 P. minimum was the dominant alga at the end of the experiment, even at a temperature that was much higher than that at which this alga was found to bloom in the field (27 °C). P. minimum and H. akashiwo had highest densities in the N:P of 25. K. veneficum grew equally well at all three N:P ratios, and was co-dominant at times at an N:P of 5. H. akashiwo had the lowest densities of the three algae in the laboratory experiment. Laboratory and field results showed both interesting similarities and significant differences in the influences of important environmental factors on competition between these harmful algal species, suggesting the need for more work to fully understand HAB dynamics in the DIB.  相似文献   

16.
Changes in composition and structure of plant communities in relation tothe soil and snow cover variation were analyzed along an altitudinal transect(1150–1750 m) from the mountain-temperate forests to a woodyshrub community and alpine meadows on Mt Velký Gápel', Slovakia.The soils below the treeline (1510 m) had a more developedorganic layer above the mineral substratum. Generally, soil depth decreased asthe altitude increased, although the maximum values were recognized at a middlealtitude in a beech stand. Snow was redistributed by westerly winds from theridgeline down to the upper forest margin. Mean snow depth decreased withaltitude up to almost snow-free sites around the summit. In the 48 plots at 16sites we recorded 118 taxa including 6 tree, 7 shrub, 18 grass, 42 herb, 5fern,25 moss and 15 lichen species. The species diversity showed no distinctrelationship to altitude but declined with canopy consolidation. The TWINSPANfloristic classification distinguished five groups of community typescharacterised by different dominants, and a further three clusters of samplesfrom transition zones. Horizontal compositional heterogeneity increased inareaswhere trees were aggregated and tree basal area was smaller. Vegetationcomposition became more patchy at open-canopy Acerpseudoplatanus–Abies alba mixed forest at 1150 m,in Picea abies forest limit 1470 m, andin Pinus mugo krummholz at 1590 m. Speciesturnover of the entire transect was 6.1 half-changes as estimated by DCA.Despite this heterogeneity, none of the 15 elevational bands had significantaggregation of species' limits. Vegetation varied continuously, with individualspecies overlapping in transition zones delimited by dominant taxa. Thecoincident aggregation of up-slope and down-slope boundaries was found at abelt1430–1510 m. This discrete ecotone corresponds to a shiftfrom the closed coniferous forest to P. mugo krummholz.Thesecond inherent up-slope boundary aggregation indicated the P.mugo krummholz – alpine meadow vegetation transition at1700 m. Spatial analysis (K-function) of eight forest plots(0.12 ha each) showed that at lower elevation, adult trees of thebroad-leaf forest were closer to a random arrangement while at higherelevation,trees of evergreen coniferous stands became aggregated toward the forest limitwith the highest intensity from 2 to 4 m. Altitudinal gradient andrelated factors explained 35% of the variance in vegetation data.Canonical correspondence analysis also showed that main vegetation changesabovethe treeline area were associated with the topographic pattern of pine shrubsand snow cover.  相似文献   

17.
Mountain environmental stresses result in increased formation of hydrogen peroxide (H2O2) and accumulation of malondialdehyde (MDA) in leaves of Polygonum viviparum. The activities of several antioxidative system enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and the contents of several non-enzymatic antioxidants such as reduced form of ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) were investigated in leaves of P. viviparum, which were collected from three altitudes (2,200, 3,200, and 3,900 m) of Tianshan Mountain in China. The activities of these four antioxidative enzymes were accompanied by increases of H2O2 levels from 2,200 to 3,200 m. However, the activities of CAT and POD were decreased, whereas the activities of SOD and GR continually increased at 3,900 m. Analyses of isoforms of SOD, CAT, POD, and GR showed that the leaves of P. viviparum exposed different altitude conditions are capable of differentially altering the intensity. Additionally, two new isoforms of SOD were detected at 3900 m. A continual increase in the ASC, ASC to DHA ratio, GSH and GSH/[GSH + GSSG] ratio, and the activity of DHAR were observed in leaves of P. viviparum with the elevation of altitude. These results suggest that the higher contents of ASC, GSH as well as an increase in reduced redox state may be essential to antioxidation processes in the leaves of P. viviparum, whereas antioxidant enzymes system is a cofactor in the processes.  相似文献   

18.
为探究库区消落带人工乔木植被恢复重建后土壤质量及肥力的变化特征,于2016年6月(T_1)、2016年9月(T_2)、2017年6月(T_3)及2017年9月(T_4)选择165—175 m高程落羽杉与立柳土壤为研究对象,并以裸地作为对照,测定土壤微生物生物量碳、氮、磷和相关理化性质。结果表明:(1)经历水淹(T_2—T_3)会使土壤微生物生物量处于较低水平,落干期(T_1—T_2、T_3—T_4)落羽杉与立柳人工植被恢复生长能显著提高土壤微生物生物量,对土壤微生物恢复具有重要意义。(2)落羽杉与立柳土壤微生物生物量碳、氮占土壤有机碳、全氮百分比在4个时期均显著高于裸地,表明落羽杉与立柳土壤微生物对土壤碳、氮库的贡献大于裸地;落羽杉土壤微生物生物量磷及其占全磷百分比在T_1和T_3处于极低水平,T_2和T_4处于较高水平,应注意磷元素的迁移。(3)土壤微生物生物量碳、氮、磷与土壤有机碳和全氮有极显著相关性,与土壤pH值呈不同程度的负相关。在三峡库区消落带进行落羽杉与立柳乔木植被恢复重建能显著提高土壤微生物生物量及土壤肥力,进一步证实开展科学的植被修复与重建值得提倡和肯定。  相似文献   

19.
海拔梯度可能通过多种环境因子影响土壤有机质,土壤有机碳库是土壤有机质的重要组成部分,其微小变化将会产生极其重要的影响。因此海拔差异可能导致海拔间土壤碳库差异。土壤有机碳是反映土壤肥力的重要指标,可能受土壤理化性质和微生物等多种因素的影响。黄山松是高山地绿化和用材的优良树种,近年来戴云山自然保护区内高海拔地区的黄山松群落呈现衰退趋势。研究戴云山黄山松林土壤有机碳组分沿海拔梯度的变化情况,不仅可以为该区域碳库估算提供科学依据,而且有助于揭示影响黄山松生长变化的机理。因此,选取戴云山不同海拔[1300 m (L)、1450 m (M)和1600 m (H)]梯度的黄山松林,对其土壤基本理化性质、有机碳组分及微生物特征进行测定和分析。研究发现,海拔梯度下土壤养分含量呈先升高后降低的变化趋势,土壤碳组分含量与其变化一致,且微生物生物量碳和微生物生物量氮均在M海拔处最高,海拔梯度对碳水解酶没有显著影响。冗余分析表明,总氮是影响土壤有机碳变化的最主要因素,其次是碳氮比。因此在海拔跨度不大的情况下,土壤有机碳动态可能主要受氮素而非温度的影响。高海拔地区土壤惰性碳占比高,未来可能会持续加剧该地区黄山松的...  相似文献   

20.
The hypothesis was tested that potential tree height and biomass in mangroves decrease downstream with the tidal gradient along the Okukubi River in Okinawa Island, Japan. The mangrove stands consisted of Bruguiera gymnorrhiza (L.) Lamk. and Kandelia obovata (S., L.) Yong (Rhizophoraceae). Four sites were selected considering the distance from the mouth of the river. Soil salinity increased downstream, while soil total nitrogen content decreased. The soil redox potential did not vary along the river. Maximum gross photosynthesis and tree height for each species decreased downstream. The potential tree height (Hmax) inferred from the stem diameter (D0.1)–tree height (H) relationship ( a, h, coefficient) in each species decreased downstream. The tree density (ρ)–mean tree size () relationships ( K, α, coefficient) determined for four sites revealed that the mean tree size at any given tree density decreased downstream, which indicates the decrease of potential biomass. Furthermore, an index for biomass () was homogeneous within a site regardless of tree density, i.e. the value of α at each site did not differ significantly from 1.0 (p > 0.05). The decreases in potential tree height and biomass may be partially ascribed to the stressful environments at the downstream sites characterized by high salinity (>2.6%) and nitrogen-poor soils (<0.25 ppt) in our study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号