首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of pressure on the unfolding of the molten globule (MG) state of canine milk lysozyme (CML) was examined using ultraviolet spectroscopy. The volume changes of the MG-unfolded-state transition were observed at pH 2.0 and around 20 to 60 degrees C, but no volume change has been found for bovine alpha-lactalbumin, which is homologous to CML. Our results suggest that the MG state of CML possesses a tightly packed hydrophobic core.  相似文献   

2.
Here, we show that an unfolded intermediate of canine milk lysozyme is extraordinarily stable compared with that of the other members of the lysozyme-alpha-lactalbumin superfamily, which has been studied previously. The stability of the intermediate of this protein was investigated using calorimetry, CD spectroscopy, and NMR spectroscopy, and the results were interpreted in terms of the structure revealed by X-ray crystallography at a resolution of 1.85 A to an R-factor of 17.8%. On the basis of the results of the thermal unfolding, this protein unfolds in two clear cooperative stages, and the melting temperature from the intermediate to the unfolded states is about 20 degrees C higher than that of equine milk lysozyme. Furthermore, the (1)H NMR spectra of canine milk lysozyme at 60 degrees C, essentially 100% of which exists in the intermediate, showed that small resonance peaks that arise from ring-current shifts of aliphatic protons are still present in the upfield region from 0 to -1 ppm. The protein at this temperature (60 degrees C) and pH 4.5 has been found to bind 1-anilino-naphthalene-8-sulfonate (ANS) with enhancement of the fluorescence intensity compared with that of native and thermally unfolded states. We interpret that the extraordinarily stable intermediate is a molten globule state, and the extraordinary stabilization of the molten globule state comes from stronger protection around the C- and D-helix of the aromatic cluster region due to the His-21 residue. The conclusion helps to explain how the molten globule state acquires its structure and stability.  相似文献   

3.
The effect of pressure on the unfolding of the native (N) and molten globule (MG) state of canine milk lysozyme (CML) was examined using ultraviolet (UV) spectroscopy at pH 4.5 and 2.0, respectively. It appeared that the thermally induced unfolding was promoted by the increase of pressure from atmospheric to 100 MPa, which indicates that both the N and MG states of CML unfolded with the decrease of the partial molar volume change (DeltaV). The volume changes needed for unfolding were estimated from the free energy change vs. pressure plots, and these volume changes became less negative from 20 to 60 degrees C. The DeltaV values at 25 degrees C were obtained for the N-MG (-46 cm3/mol) and MG-unfolded-state (U) transition (-40 cm3/mol). With regards to the MG-U transition, this value is contrastive to that of bovine alpha-lactalbumin (BLA) (0.9 cm3/mol), which is homologous to CML. Previous studies revealed that the MG state of CML was significantly more stable, and closer to the N state in structure, than that of BLA. In contrast to the swollen hydrophobic core of the MG state of BLA, our results suggest that the MG state of CML possesses a tightly packed hydrophobic core into which water molecules cannot penetrate.  相似文献   

4.
The nature of denatured ensembles of the enzyme human carbonic anhydrase (HCA) has been extensively studied by various methods in the past. The protein constitutes an interesting model for folding studies that does not unfold by a simple two-state transition, instead a molten globule intermediate is highly populated at 1.5 M GuHCl. In this work, NMR and H/D exchange studies have been conducted on one of the isozymes, HCA I. The H/D exchange studies, which were enabled by the previously obtained resonance assignment of HCA I, have been used to identify unfolded forms that are accessible from the native state. In addition, the GuHCl-induced unfolded states of HCA I have also been characterized by NMR at GuHCl concentrations in the 0-5 M range. The most important findings in this work are as follows: (1) Amide protons located in the center of the beta-sheet require global unfolding events for efficient H/D exchange. (2) The molten globule and the native state give similar protection against H/D exchange for all of the observable amide protons (i.e., water seems not to efficiently penetrate the interior of the molten globule). (3) At high protein concentrations, the molten globule can form large aggregates, which are not detectable by solution-state NMR methods. (4) The unfolded state (U), present at GuHCl concentrations above 2 M, is composed of an ensemble of conformations having residual structures with different stabilities.  相似文献   

5.
In the study of protein folding, much attention has focused on the characterization of folding intermediates. We report here molecular dynamics simulations in which the initial stages of the thermal denaturation of hen egg white lysozyme in aqueous solution are examined in detail. It is found that lysozyme unfolds in a two-stage process with the initial formation a quasi-stable state in which significant rearrangement of the secondary structure takes place. No evidence for distinct folding domains was found. The simulations suggest that the formation of well-defined secondary structure occurs after the initial collapse of the peptide chain and thus tend against the framework model of protein folding.  相似文献   

6.
The mechanism of secretion of the milk fat globule   总被引:7,自引:0,他引:7  
  相似文献   

7.
Vibrational Raman optical activity (ROA) spectra of the calcium-binding lysozyme from equine milk in native and nonnative states are measured and compared with those of the homologous proteins hen egg white lysozyme and bovine alpha-lactalbumin. The ROA spectrum of holo equine lysozyme at pH 4.6 and 22 degrees C closely resembles that of hen lysozyme in regions sensitive to backbone and side chain conformations, indicating similarity of the overall secondary and tertiary structures. However, the intensity of a strong positive ROA band at approximately 1340 cm(-1), which is assigned to a hydrated form of alpha helix, is more similar to that in the ROA spectrum of bovine alpha-lactalbumin than hen lysozyme and may be associated with the greater flexibility and calcium-binding ability of equine lysozyme and bovine alpha-lactalbumin compared with hen lysozyme. In place of a strong sharp positive ROA band at approximately 1300 cm(-1) in hen lysozyme that is assigned to an alpha helix in a more hydrophobic environment, equine lysozyme shows a broader band centered at approximately 1305 cm(-1), which may reflect greater heterogeneity in some alpha-helical sequences. The ROA spectrum of apo equine lysozyme at pH 4.6 and 22 degrees C is almost identical to that of the holo protein, which indicates that loss of calcium has little influence on the backbone and side chain conformations, including the calcium-binding loop. From the similarity of their ROA spectra, the A state at pH 1.9 and both 2 and 22 degrees C and the apo form at pH 4.5 and 48 degrees C, which are partially folded denatured (molten globule or state A) forms of equine lysozyme, have similar structures that the ROA suggests contain much hydrated alpha helix. The A state of equine lysozyme is shown by these results to be more highly ordered than that of bovine alpha-lactalbumin, the ROA spectrum of which has more features characteristic of disordered states. A positive tryptophan ROA band at approximately 1551 cm(-1) in the native holo protein disappears in the A state, which is probably due to the presence of nonnative conformations of the tryptophans associated with a previously identified cluster of hydrophobic residues.  相似文献   

8.
To address the contribution of hydrophobic interaction to the stability of molten globule (MG) of proteins, the effects of various polyols (ethylene glycol, glycerol, erythritol, xylitol, sorbitol, and inositol) on the structure of acid-unfolded horse cytochrome c were examined at pH 2, by means of circular dichroism (CD), partial specific volume, adiabatic compressibility, and differential scanning calorimetry (DSC). Addition of polyols induced the characteristic CD spectra of MG, the effect being enhanced with an increase in their concentration and chain length (the number of OH groups) of polyols except for ethylene glycol. The free energy change of MG formation by sorbitol was comparable with those for the salt-induced MG formation but the heat capacity change was negligibly small. The partial specific volume did not change within the experimental error but the adiabatic compressibility largely increased by MG formation. The sorbitol-induced MG showed a highly cooperative DSC thermogram with a large heat capacity change in comparison with the salt-induced one. These results demonstrate that polyols can stabilize the MG state of this protein through the enhanced hydrophobic interaction overcoming the electrostatic repulsion between charged residues. The stabilizing mechanism and structure of MG state induced by polyols were discussed in terms of the preferential solvent interactions and osmotic pressure of the medium, in comparison with the salt-induced one.  相似文献   

9.
The molten globule state of equine lysozyme is more stable than that of alpha-lactalbumin and is stabilized by non-specific hydrophobic interactions and native-like hydrophobic interactions. We constructed a chimeric protein which is produced by replacing the flexible loop (residues 105-110) in human alpha-lactalbumin with the helix D (residues 109-114) in equine lysozyme to investigate the possible role of the helix D for the high stability and native-like packing interaction in the molten globule state of equine lysozyme. The stability of the molten globule state formed by the chimeric protein to guanidine hydrochloride-induced unfolding is the same as that of equine lysozyme and is substantially greater than that of human alpha-lactalbumin, although only six residues come from equine lysozyme. Our results also suggest that the non-native interaction in the molten globule state of alpha-lactalbumin changes to the native-like packing interaction due to helix substitution. The solvent-accessibility of the Trp residues in the molten globule state of the chimeric protein is similar to that in the molten globule state of equine lysozyme in which packing interaction around the Trp residues in the native state is partially preserved. Therefore, the helix D in equine lysozyme is one of the contributing factors to the high stability and native-like packing interaction in the molten globule state of equine lysozyme. Our results indicate that the native-like packing interaction can stabilize the rudimentary intermediate which is stabilized by the non-specific hydrophobic interactions.  相似文献   

10.
Thermodynamics of thermal transitions of a calcium-binding lysozyme, canine milk lysozyme (CML), was studied using differential scanning calorimetry and compared with those for homologous proteins, human alpha-lactalbumin (alpha-hLA) and equine milk lysozyme (EML). The results showed that CML and EML exhibit two clear heat absorption peaks in the absence of calcium ions (apo-form), although the cooperative thermal transition of alpha-hLA is apparently absent in this form. The first peak represents the unfolding transition from the native to an unfolding intermediate state (N-I transition) and the second peak represents that from the intermediate to the thermally unfolded state (I-U transition). We interpret that the cooperative thermal transition, which is observed between the intermediate and the thermally unfolded states of CML and EML, comes from the native-like packing interaction in their intermediate states. Furthermore, to examine the role of the stabilization mechanism of CML intermediate, we constructed four variant CMLs (H21G, I56L, A93S and V109K), in which the residues of CML are substituted for those of EML, and also investigated their thermal stability. Especially the His21 and Val109 of CML play a role in stabilization of the intermediate state and their contributions to the unfolding free energy are estimated to be 2.0 and 1.8 kJ/mol, respectively. From the results of the mutational analysis, a few differences in the local helical interactions within the alpha-domain are found to be predominant in stabilizing the intermediate state.  相似文献   

11.
The equilibrium and kinetics of canine milk lysozyme folding/unfolding were studied by peptide and aromatic circular dichroism and tryptophan fluorescence spectroscopy. The Ca2+-free apo form of the protein exhibited a three-state equilibrium unfolding, in which the molten globule state is well populated as an unfolding intermediate. A rigorous analysis of holo protein unfolding, including the data from the kinetic refolding experiments, revealed that the holo protein also underwent three-state unfolding with the same molten globule intermediate. Although the observed kinetic refolding curves of both forms were single-exponential, a burst-phase change in the peptide ellipticity was observed in both forms, and the burst-phase intermediates of both forms were identical to each other with respect to their stability, indicating that the intermediate does not bind Ca2+. This intermediate was also shown to be identical to the molten globule state observed at equilibrium. The phi-value analysis, based on the effect of Ca2+ on the folding and unfolding rate constants, showed that the Ca2+-binding site was not yet organized in the transition state of folding. A comparison of the result with that previously reported for alpha-lactalbumin indicated that the folding initiation site is different between canine milk lysozyme and alpha-lactalbumin, and hence, the folding pathways must be different between the two proteins. These results thus provide an example of the phenomenon wherein proteins that are very homologous to each other take different folding pathways. It is also shown that the native state of the apo form is composed of at least two species that interconvert.  相似文献   

12.
The hydration of nonnative states is central to protein folding and stability but has been probed mainly by indirect methods. Here we use water 17O relaxation dispersion to monitor directly the internal and external hydration of alpha-lactalbumin, lysozyme, ribonuclease A, apomyoglobin and carbonic anhydrase in native and nonnative states. The results show that nonnative proteins are more structured and less solvent exposed than commonly believed. Molten globule proteins preserve most of the native internal hydration sites and have native-like surface hydration. Proteins denatured by guanidinium chloride are not fully solvent exposed but contain strongly perturbed occluded water. These findings shed new light on hydrophobic stabilization of proteins.  相似文献   

13.
The rate of exchange of the labile hydrogens of lysozyme was measured by out-exchange of tritium from the protein in solution and from powder samples of varied hydration level, for pH 2, 3, 5, 7, and 10 at 25 degrees C. The dependence of exchange of powder samples on the level of hydration was the same for all pHs. Exchange increased strongly with increased hydration until reaching a rate of exchange that is constant above 0.15 g of H2O/g of protein (120 mol of H2O/mol of protein). This hydration level corresponds to coverage of less than half the protein surface with a monolayer of water. No additional hydrogen exchange was observed for protein powders with higher water content. Considered in conjunction with other lysozyme hydration data [Rupley, J. A., Gratton, E., & Careri, G. (1983) Trends Biochem. Sci. (Pers. Ed.) 8, 18-22], this observation indicates that internal protein dynamics are not strongly coupled to surface properties. The use of powder samples offers control of water activity through regulation of water vapor pressure. The dependence of the exchange rate on water activity was about fourth order. The order was pH independent and was constant from 114 to 8 mol of hydrogen remaining unexchanged/mol of lysozyme. These results indicate that the rate-determining step for protein hydrogen exchange is similar for all backbone amides and involves few water molecules. Powder samples were hydrated either by isopiestic equilibration, with a half-time for hydration of about 1 h, or by addition of solvent to rapidly reach final hydration. Samples hydrated slowly by isopiestic equilibration exhibited more exchange than was observed for samples of the same water content that had been hydrated rapidly by solvent addition. This difference can be explained by salt and pH effects on the nearly dry protein. Such effects would be expected to contribute more strongly during the isopiestic equilibration process. Solution hydrogen exchange measurements made for comparison with the powder measurements are in good agreement with published data. Rank order was proven the same for all pHs by solution pH jump experiments. The effect of ionic strength on hydrogen exchange was examined at pH 2 and pH 5 for protein solutions containing up to 1.0 M added salt. The influence of ionic strength was similar for both pHs and was complex in that the rate increased, but not monotonically, with increased ionic strength.  相似文献   

14.
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for the study of the structure, dynamics, and folding of proteins in solution. It is particularly powerful when applied to dynamic or flexible systems, such as partially folded molten globule states of proteins, which are not usually amenable to X-ray crystallography. In this article, NMR methods suitable for the detailed characterisation of molten globule states are described. The specific method used to study the molten globule is determined by the quality of the NMR spectrum obtained. Molten globules are characterised by significant levels of secondary structure. Site-specific hydrogen-deuterium exchange experiments can be used to identify residues located in regions of secondary structure in the molten globule. If spectra characterised by sharp peaks are observed for the molten globule then information about secondary structure can be obtained by analysis of (1)H(alpha), (13)C(alpha), (13)C(beta), and (13)CO chemical shifts; this can be supplemented by (15)N relaxation studies. For molten globules characterised by extremely broad peaks (15)N-edited NMR experiments carried out in increasing concentrations of denaturants can be used to study the relative stabilities of different regions of structure. Examples of the application of these methods to the study of the low pH molten globule states of alpha-lactalbumin and apomyoglobin are presented.  相似文献   

15.
Mazon H  Marcillat O  Forest E  Smith DL  Vial C 《Biochemistry》2004,43(17):5045-5054
Our understanding of the mechanism of protein folding can be improved by the characterization of folding intermediate states. Intrinsic tryptophan fluorescence measurements of equilibrium GdmHCl-induced unfolding of MM-CK allow for the construction of a "phase diagram", which shows the presence of five different conformational states, including three partially folded intermediates. However, only three states are detected by using pulsed-labeled H-D exchange analyzed by electrospray ionization mass spectrometry. One of them is the native state, and the two other species are present in proportions strongly dependent on the GdmHCl concentration and denaturation time. The low-mass peak is due to a largely exchange-incompetent state, which has gained only approximately 10 deuteriums more than the native protein. This population of MM-CK molecules has undergone a small conformational change induced by low GdmHCl concentrations. However, this limited change is in itself not sufficient to inactivate the enzyme or is easily reversible. The high-mass peak corresponds to a population of MM-CK that is fully deuterated. The comparison of fluorescence, activity, and H-D exchange measurements shows that the maximally populated intermediate at 0.8 M GdmHCl has the characteristics of a molten globule. It has no activity; it has 55% of its native alpha-helices and a maximum fluorescence emission wavelength of approximately 341 nm, and it binds ANS strongly. However, no protection against exchange is detected under the conditions used in this work. This paradox, the presence of significant residual secondary and tertiary structures detected by optical probes and the total deuteration of its amide protons detected by H-D exchange and mass spectrometry, could be explained by a highly dynamic MM-CK molten globule.  相似文献   

16.
The denatured states of alpha-lactalbumin, which have features of a molten globule state, have been studied to elucidate the energetics of the molten globule state and its contribution to the stability of the native conformation. Analysis of calorimetric and CD data shows that the heat capacity increment of alpha-lactalbumin denaturation highly correlates with the degree of disorder of the residual structure of the state. As a result, the denaturational transition of alpha-lactalbumin from the native to a highly ordered compact denatured state, and from the native to the disordered unfolded state are described by different thermodynamic functions. The enthalpy and entropy of the denaturation of alpha-lactalbumin to compact denatured state are always greater than the enthalpy and entropy of its unfolding. This difference represents the unfolding of the molten globule state. Calorimetric measurements of the heat effect associated with the unfolding of the molten globule state reveal that it is negative in sign over the temperature range of molten globule stability. This observation demonstrates the energetic specificity of the molten globule state, which, in contrast to a protein with unique tertiary structure, is stabilized by the dominance of negative entropy and enthalpy of hydration over the positive conformational entropy and enthalpy of internal interactions. It is concluded that at physiological temperatures the entropy of dehydration is the dominant factor providing stability for the compact intermediate state on the folding pathway, while for the stability of the native state, the conformational enthalpy is the dominant factor.  相似文献   

17.
The hydrogen-exchange behavior of the low-pH molten globule of human alpha-lactalbumin, containing all four disulfides, has been examined and compared with that of a single disulfide variant, [28-111] alpha-lactalbumin, and of a series of proline variants of [28-111] alpha-lactalbumin. The small differences in hydrogen-exchange protection exhibited by these partially folded species were compared by mixing two or more proteins and monitoring their exchange simultaneously using mass spectrometry. The effect of single proline mutations within each alpha-domain helix on hydrogen-exchange protection has been investigated using six proline variants of [28-111] alpha-lactalbumin, L11P, L12P, M30P, I95P, K108P and Q117P. The results show that proline mutations in the A, B, C and D alpha-helices lead to a loss of hydrogen-exchange protection for residues in the local helix without perturbing hydrogen-exchange protection in other regions of the protein. Thus, local unfolding of the A, B, C and D helices does not significantly alter the packing and solvent accessibility of other regions of the molten globule. By contrast, introduction of a proline residue in the C-terminal 3(10) helix produces a larger and more widespread loss of hydrogen-exchange protection, demonstrating that longer-range perturbations of the molten globule have occurred. Thus, residues in this C-terminal region must be involved in contacts that are critical for the stabilisation of the compact molten globule structure.  相似文献   

18.
The structure and energetics of protein-folding intermediates are poorly understood. We have identified, in the thermal unfolding of the apoflavodoxin from Anabaena PCC 7119, an equilibrium intermediate with spectroscopic properties of a molten globule and substantial enthalpy and heat capacity of unfolding. The structure of the intermediate is probed by mutagenesis (and phi analysis) of polar residues involved in surface-exposed hydrogen bonds connecting secondary-structure elements in the native protein. All hydrogen bonds analysed are formed in the molten globule intermediate, either with native strength or debilitated. This suggests the overall intermediate's topology and surface tertiary interactions are close to native, and indicates that hydrogen bonding may contribute significantly to shape the conformation and energetics of folding intermediates.  相似文献   

19.
The apoflavodoxin fragment comprising residues 1-149 that can be obtained by chemical cleavage of the C-terminal alpha-helix of the full-length protein is known to populate a molten globule conformation that displays a cooperative behaviour and experiences two-state urea and thermal denaturation. Here, we have used a recombinant form of this fragment to investigate molten globule energetics and to derive structural information by equilibrium Phi-analysis. We have characterized 15 mutant fragments designed to probe the persistence of native interactions in the molten globule and compared their conformational stability to that of the equivalent full-length apoflavodoxin mutants. According to our data, most of the mutations analysed modify the stability of the molten globule fragment following the trend observed when the same mutations are implemented in the full-length protein. However, the changes in stability observed in the molten globule are much smaller and the Phi-values calculated are (with a single exception) below 0.4. This is consistent with an overall and significant debilitation of the native structure. Nevertheless, the fact that the molten globule fragment can be stabilised using as a guide the native structure of the full-length protein (by increasing helix propensity, optimising charge interactions and filling small cavities) suggests that the overall structure of the molten globule is still quite close to native, in spite of the lowered stability observed.  相似文献   

20.
Molten globules are partially folded states of proteins which are generally believed to mimic structures formed during the folding process. In order to determine the minimal requirements for the formation of a molten globule state, we have prepared a set of peptide models of the molten globule state of human alpha-lactalbumin (alphaLA). A peptide consisting of residues 1-38 crosslinked, via the native 28-111 disulfide bond, to a peptide corresponding to residues 95-120 forms a partially folded state at pH 2.8 which has all of the characteristics of the molten globule state of alphaLA as judged by near and far UV CD, fluorescence, ANS binding and urea denaturation experiments. The structure of the peptide construct is the same at pH 7.0. Deletion of residues 95-100 from the construct has little effect. Thus, less than half the sequence is required to form a molten globule. Further truncation corresponding to the selective deletion of the A (residues 1-19) or D (residues 101-110) helices or the C-terminal 310 helix (residues 112-120) leads to a significant loss of structure. The loss of structure which results from the deletion of any of these three regions is much greater than that which would be expected based upon the non-cooperative loss of local helical structure. Deletion of residues corresponding to the region of the D helix or C-terminal 310 helix region results in a peptide construct which is largely unfolded and contains no more helical structure than is expected from the sum of the helicity of the two reduced peptides. These experiments have defined the minimum core structure of the alphaLA molten globule state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号