首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous mutants of Clostridium acetobutylicum NRRL B643 that were resistant to allyl alcohol (AA) were selected and characterized. These mutants contained 10- to 100-fold reduced activities of butanol and ethanol alcohol dehydrogenase. The AA mutants formed two groups and produced no ethanol. Type 1 AA mutants produced significant amounts of a new solvent, butyraldehyde, and contained normal levels of the coenzyme A-dependent butyraldehyde dehydrogenase (BAD). Type 2 AA mutants produced no significant butyraldehyde and lower levels of all solvents, and they contained 45- to 100-fold lower activity levels of BAD. Following ethyl methanesulfonate mutagenesis, low-acid-producing (Acid) mutants were selected and characterized as superinduced solvent producers, yielding more than 99% of theoretical glucose carbon as solvents and only small amounts of acetate and butyrate. Following ethyl methanesulfonate mutagenesis, 13 sporulation-negative (Spo) mutants were characterized; and 3 were found to produce only butyrate and acetate, a minor amount of acetone, and no alcohols. These Spo mutants contained reduced butanol dehydrogenase activity and no BAD enzyme activity. The data support the view that the type 2 AA, the Acid, and the Spo mutants somehow alter normal regulated expression of the solvent pathway in C. acetobutylicum.  相似文献   

2.
3.
LcrV, the type III needle cap protein of pathogenic Yersinia, has been proposed to function as a tether between YscF, the needle protein, and YopB-YopD to constitute the injectisome, a conduit for the translocation of effector proteins into host cells. Further, insertion of LcrV-capped needles from a calcium-rich environment into host cells may trigger the low-calcium signal for effector translocation. Here, we used a genetic approach to test the hypothesis that the needle cap responds to the low-calcium signal by promoting injectisome assembly. Growth restriction of Yersinia pestis in the absence of calcium (low-calcium response [LCR+] phenotype) was exploited to isolate dominant negative lcrV alleles with missense mutations in its amber stop codon (lcrV*327). The addition of at least four amino acids or the eight-residue Strep tag to the C terminus was sufficient to generate an LCR phenotype, with variant LcrV capping type III needles that cannot assemble the YopD injectisome component. The C-terminal Strep tag appears buried within the cap structure, blocking effector transport even in Y. pestis yscF variants that are otherwise calcium blind, a constitutive type III secretion phenotype. Thus, LcrV*327 mutants arrest the needle cap in a state in which it cannot respond to the low-calcium signal with either injectisome assembly or the activation of type III secretion. Insertion of the Strep tag at other positions of LcrV produced variants with wild-type LCR+, LCR, or dominant negative LCR phenotypes, thereby allowing us to identify discrete sites within LcrV as essential for its attributes as a secretion substrate, needle cap, and injectisome assembly factor.  相似文献   

4.
T. Stearns  M. A. Hoyt    D. Botstein 《Genetics》1990,124(2):251-262
Three new genes affecting microtubule function in Saccharomyces cerevisiae were isolated by screening for mutants displaying supersensitivity to the antimicrotubule drug benomyl. Such mutants fall into six complementation groups: TUB1, TUB2 and TUB3, the three tubulin genes of yeast, and three new genes, which we have named CIN1, CIN2 and CIN4. Mutations in each of the CIN genes were also independently isolated by screening for mutants with increased rates of chromosome loss. Strains bearing mutations in the CIN genes are approximately tenfold more sensitive than wild type to both benomyl and to the related antimicrotubule drug, nocodazole. This phenotype is recessive for all alleles isolated. The CIN1, CIN2 and CIN4 genes were cloned by complementation of the benomyl-supersensitive phenotype. Null mutants of each of the genes are viable, and have phenotypes similar to those of the point mutants. Genetic evidence for the involvement of the CIN gene products in microtubule function comes from the observation that some tubulin mutations are suppressed by cin mutations, while other tubulin mutations are lethal in combination with cin mutations. Additional genetic experiments with cin mutants suggest that the three genes act together in the same pathway or structure to affect microtubule function.  相似文献   

5.
6.
7.
Conditional Mutants of Meiosis in Yeast   总被引:20,自引:9,他引:11       下载免费PDF全文
Three temperature-sensitive mutants, spo1-1, spo2-1, and spo3-1, were characterized with respect to their behavior in sporulation medium at a restrictive temperature. The time of expression of the functions defective in the mutants was determined by temperature-shift experiments during the sporulation process. In addition, each mutant was examined for the following: (i) its ability to undergo the nuclear divisions of meiosis; (ii) deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis; (iii) protein turnover; and (iv) colony-forming ability after exposure to sporulation medium. Mutant spo1-1 is defective in a function which confers a temperature-sensitive period which extends over 32% of the sporulation cycle. The temperature-sensitive period of mutant spo2-1 occupies 34% of the cycle, whereas the temperature-sensitive period of mutant spo3-1 extends over 2% of the sporulation cycle. Cytological evidence indicates that all three mutants initiate but do not complete the meiotic nuclear divisions. The DNA content of sporulation cultures of mutants spo1-1 and spo3-1 did not increase to the wild-type level; DNA synthesis in spo2-1 was normal. All three strains exhibit a loss of colony-forming ability during incubation in sporulation medium at the restrictive temperature. RNA and protein synthesis and protein turnover occur in the mutants.  相似文献   

8.
Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose. This suggests that substrate selectivity could be altered by the encapsulation.  相似文献   

9.
A xylose-regulated plasmid expression system for producing high levels of recombinant proteins in Bacillus megaterium has recently been described [Appl Microbiol Biotechnol 35:594, 1991]. Using an antibiotic resistance protein as the expressed protein, we have been able to select mutant plasmids that produce increased levels of heterologous protein. The mutant plasmids show increased segregational stability and have lost the ability to be transformed into Escherichia coli. The same selection protocol has been used to isolate a mutant strain producing high levels of the Bacillus sphaericus mosquitocidal binary toxin. This strain shows toxicity to Culex quinquefasciatus larvae that is comparable to B. sphaericus 2362 and higher than a B. megaterium strain with the original expression plasmid. This approach may be generally useful for high-level regulated protein expression in B. megaterium. Received: 6 December 1996 / Accepted: 28 January 1997  相似文献   

10.
11.
A population of petite ascospores (mitochondrial deoxyribonucleic acid [mtDNA]-less), produced by brief ethidium bromide (EthBr) mutagenesis prior to transfer to sporulation medium, was used to examine the role of the mitochondrial genetic system on germination and outgrowth in Saccharomyces cerevisiae. Petite ascospores, which are morphologically indistinguishable by phase-contrast microscopy from wild-type spores, germinate and proceed through outgrowth at a rate and extent only slightly less than that of wild-type spores. Both developmental processes occurred in the absence of mtDNA synthesis and measurable cytochrome oxidase activity. These results indicate that neither respiration nor a functional mitochondrial genome are required for germination and outgrowth. The properties of the petite clones were typical of petites formed during vegetative growth. Individual sporal clones differed markedly from each other in suppressiveness. Petite sporal clones which exhibited a high degree of supressiveness also contained a reduced but detectable amount of mtDNA of altered buoyant density. One clone contained a unique mtDNA with a buoyant density higher than that of wild-type mtDNA.  相似文献   

12.
Control of microorganisms such as Bacillus cereus spores is critical to ensure the safety and a long shelf life of foods. A bifunctional single chain antibody has been developed for detection and binding of B. cereus T spores. The genes that encode B. cereus T spore single-chain antibody and streptavidin were connected for use in immunoassays and immobilization of the recombinant antibodies. A truncated streptavidin, which is smaller than but has biotin binding ability similar to that of streptavidin, was used as the affinity domain because of its high and specific affinity with biotin. The fusion protein gene was expressed in Escherichia coli BL21 (DE3) with the T7 RNA polymerase-T7 promoter expression system. Immunoblotting revealed an antigen specificity similar to that of its parent native monoclonal antibody. The single-chain antibody-streptavidin fusion protein can be used in an immunoassay of B. cereus spores by applying a biotinylated enzyme detection system. The recombinant antibodies were immobilized on biotinylated magnetic beads by taking advantage of the strong biotin-streptavidin affinity. Various liquids were artificially contaminated with 5 × 104 B. cereus spores per ml. Greater than 90% of the B. cereus spores in phosphate buffer or 37% of the spores in whole milk were tightly bound and removed from the liquid phase by the immunomagnetic beads.  相似文献   

13.
In this study, we present a nonhazardous biological method of producing chitosan beads using the budding yeast Saccharomyces cerevisiae. Yeast cells cultured under conditions of nutritional starvation cease vegetative growth and instead form spores. The spore wall has a multilaminar structure with the chitosan layer as the second outermost layer. Thus, removal of the outermost dityrosine layer by disruption of the DIT1 gene, which is required for dityrosine synthesis, leads to exposure of the chitosan layer at the spore surface. In this way, spores can be made to resemble chitosan beads. Chitosan has adsorptive features and can be used to remove heavy metals and negatively charged molecules from solution. Consistent with this practical application, we find that spores are capable of adsorbing heavy metals such as Cu2+, Cr3+, and Cd2+, and removal of the dityrosine layer further improves the adsorption. Removal of the chitosan layer decreases the adsorption, indicating that chitosan works as an adsorbent in the spores. Besides heavy metals, spores can also adsorb a negatively charged cholesterol derivative, taurocholic acid. Furthermore, chitosan is amenable to chemical modifications, and, consistent with this property, dit1Δ spores can serve as a carrier for immobilization of enzymes. Given that yeast spores are a natural product, our results demonstrate that they, and especially dit1Δ mutants, can be used as chitosan beads and used for multiple purposes.  相似文献   

14.
Sister chromatid separation requires two steps of proteolysis. Securin, the chaperon and inhibitor of separase, is destructed in anaphase after polyubiquitination, and resulting activated separase cleaves the cohesin subunit Scc1/Rad21. Fission yeast securin/Cut2 and separase/Cut1 that form the complex are essential for viability and a number of temperature-sensitive (ts) mutants have been isolated. We here report that the stresses such as 1.2 M sorbitol, 0.6 M KCl and 0.1 M CaCl2 in the medium suppress the ts phenotypes of all the cut1 mutants and two of the three cut2 mutants examined. This unexpected finding led us to study how the ts phenotypes of cut1 and cut2 mutants were rescued by the increased stresses. The stresses caused a temporal arrest in the cell number increase, and this arrest was dependent on Spc1/Sty1 but not Rad3 and Mad2. During the 2-3 hr arrested period that occurred prior to the re-start of division cycle, the level of securin dramatically increased, apparently accompanying the increased complex formation with mutant separase protein. Securin bound to separase was hyperphosphorylated. The stresses could not rescue the indestructible Cut2 and Rad21 mutants. We postulate that the stresses produce the hyperchaperonic form of Cut2 that can rescue separase mutations.  相似文献   

15.
Macromolecule Synthesis in Temperature-sensitive Mutants of Yeast   总被引:194,自引:46,他引:148       下载免费PDF全文
Approximately 400 temperature-sensitive mutants of Saccharomyces cerevisiae were isolated. The mutants were unable to form colonies on enriched media at 36 C, but grew normally, or nearly so, at 23 C. The mutants were tested for loss of viability, change in morphology, increase in cell number, and the ability to synthesize protein, ribonucleic acid (RNA), and deoxyribonucleic acid (DNA) after a shift from 23 to 36 C. Mutations were found which resulted in a preferential loss of ability to carry out protein synthesis, RNA synthesis, DNA synthesis, cell division, or cell-wall formation. Diploid cells heterozygous for the temperature-sensitive mutations were constructed and tested for their ability to form colonies at 36 C. Four mutations dominant to their wild-type allele were identified.  相似文献   

16.
Following ultra-violet irradiation of the hydrocarbon-utilizing yeast, Saccharomycopsis lipolytica , a number of mutant strains were isolated which failed to show the normal staining reaction with iodine. Exponential phase cells of the mutant strains were found to contain less carbohydrate and more crude protein than wild type cells in the case of both glucose-grown and n -alkane-grown cultures. The difference between wild type and mutant carbohydrate levels was greater for glucose-grown than for n -alkane-grown cells. Carbohydrate fractionation revealed that the mutant cells were deficient in glycogen, particularly the acid-soluble fraction.  相似文献   

17.
Mutants of Yeast Deficient in Cytochrome C   总被引:14,自引:3,他引:11       下载免费PDF全文
Fred Sherman 《Genetics》1964,49(1):39-48
  相似文献   

18.
Mutants of Yeast Sensitive to Ultraviolet Light   总被引:15,自引:7,他引:8       下载免费PDF全文
Six uvr mutants of Saccharomyces cerevisiae with hypersensitivity to ultraviolet (UV) light were isolated after mutagen treatment with ethylmethanesulfonate. UV sensitivity ranges from moderate to extreme, and four of the mutants are also sensitive to nitrous acid. Ranking in terms of UV sensitivity does not parallel ranking in terms of nitrous acid sensitivity. Homozygous diploid mutant strains are somewhat less sensitive than the corresponding haploids. All mutations are recessive. None of the mutants is sensitive to gamma rays, and each shows photoreactivation after UV radiation. Complementation tests and tetrad analysis indicate that each strain represents mutation in a different gene. Two of the uvr genes are linked, and two others are centromere-linked.  相似文献   

19.
Freeze-sensitive strains of yeast were induced from a freeze-tolerant yeast Torulaspora delbrueckii by incubation with ethyl-methane sulfonate as a mutagen. A maximum ratio of mutation was attained by the incubation at 30°C for 75min. One-hundred and fifty strains of freeze-sensitive yeast were selected by plating-culture for the first screening. The freeze-tolerance ratio of each strain was examined based on the fermentative activity before and after freezing in liquid medium and dough. Strain 60B3 showed the highest freeze-sensitivity in a pre-fermented frozen dough (pre-fermented at 30°C for 2h, and frozen at ?20°C for 7 days) among eight strains finally selected.  相似文献   

20.
B-type cyclins are rapidly degraded at the transition between metaphase and anaphase and their ubiquitin-mediated proteolysis is required for cells to exit mitosis. We used a novel enrichment to isolate new budding mutants that arrest the cell cycle in mitosis. Most of these mutants lie in the CDC16, CDC23, and CDC27 genes, which have already been shown to play a role in cyclin proteolysis and encode components of a 20S complex (called the cyclosome or anaphase promoting complex) that ubiquitinates mitotic cyclins. We show that mutations in CDC26 and a novel gene, DOC1, also prevent mitotic cyclin proteolysis. Mutants in either gene arrest as large budded cells with high levels of the major mitotic cyclin (Clb2) protein at 37°C and cannot degrade Clb2 in G1-arrested cells. Cdc26 associates in vivo with Doc1, Cdc16, Cdc23, and Cdc27. In addition, the majority of Doc1 cosediments at 20S with Cdc27 in a sucrose gradient, indicating that Cdc26 and Doc1 are components of the anaphase promoting complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号