首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that the lateral diffusion, D, of the class I Major Histocompatibility Complex (MHC) glycoprotein H-2Ld is constrained by its glycosylation, when expressed in mouse L-cells. Removal of one or more of the 3 N-linked oligosaccharides of H-2Ld glycoproteins results in an increase in D. In order to further examine the influence of glycosylation on D, we compared lateral diffusion of H-2Ld expressed in wild-type CHO cells with lateral diffusion of the same molecule expressed in mutant CHO cells with aberrant surface glycosylation. In addition, we compared lateral diffusion of wild-type and unglycosylated H-2Ld antigens in these cells. In contrast to the large effect of glycosylation state on lateral diffusion of H-2Ld in mouse L-cells, there was little effect of glycosylation on lateral diffusion of H-2Ld in any of the CHO cells. This, together with similar results on hamster class I antigens, indicates that the constraints to D of H-2Ld and other class I MHC molecules are different in CHO cells than in L-cells. Measurements of lateral diffusion after treatment of cells with cytochalasin D make it clear that interactions between MHC class I molecules and a cytoskeleton are important in reducing the mobile fraction of diffusing molecules, R, though they cannot be shown to directly affect the diffusion coefficient, D.  相似文献   

2.
Class I major histocompatibility (MHC) antigens are expressed by virtually all mammalian cells, yet their levels of expression and behavior on the cell surface vary in a cell-specific fashion. A panel of lymphoid (both B and T) and nonlymphoid cell lines was used to study the kinetics of internalization of the H-2Ld class I MHC in different cell types. These studies revealed that endocytosis of H-2Ld occurs by both constitutive and PMA-regulated pathways in lymphoid cells, but only by a PMA-refractory pathway in the nonlymphoid cells tested. Transfectant derivatives of the T lymphoma, EL4, which express wild-type or mutant H-2Ld class I MHC antigens, were used to investigate the requirement for the cytoplasmic domain of the class I MHC antigen for its endocytosis in T lymphocytes. These studies showed that modification or deletion of the cytoplasmic domain of H-2Ld abrogates endocytosis via a PMA-regulated pathway. The role of cytoplasmic domain phosphorylation in PMA-inducible endocytosis was examined. The wild-type H-2Ld antigen is phosphorylated in all cell types examined, and this phosphorylation is up-regulated by PMA treatment. In contrast, cytoplasmic domain mutants of H-2Ld fail to be phosphorylated in vivo, in the presence or absence of PMA. The universality of PMA-inducible hyperphosphorylation of the class I MHC antigen among diverse cell types leads us to conclude that phosphorylation of the cytoplasmic domain, while perhaps necessary, is not sufficient for triggering endocytosis via a PMA-inducible pathway. Furthermore, the results with the cytoplasmic domain mutants of H-2Ld suggest that a structural conformation of the class I MHC cytoplasmic domain is required for endocytosis via this route.  相似文献   

3.
The lateral diffusion coefficients of various epidermal growth factor (EGF) receptor mutants with increasing deletions in their carboxy-terminal cytoplasmic domain were compared. A full size cDNA construct of human EGF receptor and different deletion constructs were expressed in monkey COS cells. The EGF receptor mutants expressed on the cell surface of the COS cells were labeled with rhodamine-EGF, and the lateral diffusion coefficients of the labeled receptors were determined by the fluorescence photo-bleaching recovery method. The lateral mobilities of three deletion mutants, including a mutant that has only nine amino acids in the cytoplasmic domain, are all similar (D approximately equal to 1.5 X 10(-10) cm2/s) to the lateral mobility of the "wild-type" receptor, which possess 542 cytoplasmic domain of EGF receptor, including its intrinsic protein kinase activity and phosphorylation state, are not required for the restriction of its lateral mobility.  相似文献   

4.
Molecular signals for phosphatidylinositol modification of the Qa-2 antigen   总被引:1,自引:0,他引:1  
Most cell surface proteins are anchored to the cell bilayer by hydrophobic membrane-spanning domains. Recently it has been shown that a small class of molecules are attached to cell surfaces via a phosphatidylinositol moiety covalently linked to the C-terminus of the mature processed polypeptide. The molecular signals that identify a polypeptide for phosphatidylinositol (PI) attachment have not been well defined in any system, but are thought to reside in the C-terminus of the primary translation product. We report that all the signals responsible for PI anchoring of Qa-2 Ag are confined to the 36 C-terminal residues of the precursor proteins. To investigate further the features that signal cleavage and PI addition, we have studied mutants of two closely related murine class I MHC molecules: the PI-linked Ag, Q9b, from the Qa-2 Ag family, and the integral membrane transplantation antigen, H-2Ld. The addition of 15 amino acids to the three residue long cytoplasmic domain of Q9b or the mutation of Asp295 found in its C-terminal hydrophobic domain to Val converts this molecule into an integral membrane protein. However, the introduction of a short three residue cytoplasmic tail and Asp295 into the transmembrane domain of H-2Ld does not convert this molecule to a PI-linked one. The results of these analyses suggest that the PI-processing signals may depend on overall conformation, hydrophobicity, and length of the C-terminal domain of the precursor protein. In addition these data indicate that PI anchoring of class I Ag requires more than two mutational steps and may have been selected during the evolution.  相似文献   

5.
Human pro-tumor necrosis factor (pro-TNF) is a type II transmembrane protein with a highly conserved 76-residue leader sequence. We have analyzed the behavior, both in a microsomal translocational system and by transfection, of a series of mutants with deletions from the cytoplasmic, transmembrane, and linking domains. Cytoplasmic deletions included the Arg doublet at -49 and -48 and/or the Lys doublet at -58 and -57; additional mutants included deletion of residues -73 to -55 and -73 to -55, -49, and -48. The transmembrane and linking domain mutants included deletions in the -42 to -35 region, combined with the deletion of residues -32 to -1. Two hybrid mutants combined the cytoplasmic deletions with the deletion of residues -32 to -1. All of the cytoplasmic deletion mutants were properly translocated, as were the transmembrane deletion mutants with deletions up to residues -36, -35, -32 to -1, although the last one exhibited reduced efficiency; further incremental deletions, including deletions of residues -38 to -35 and -32 to -1, completely blocked translocation. Both hybrid mutants were effectively translocated; furthermore, transfection analysis revealed competent expression and maturation of both the cytoplasmic and hybrid mutants. Thus, proper expression and maturation of human pro-TNF can be accomplished with as few as approximately 12 of the 26 residues of the native transmembrane domain and with a net negative charge in the cytoplasmic domain flanking the transmembrane region.  相似文献   

6.
Harman A  Browne H  Minson T 《Journal of virology》2002,76(21):10708-10716
Herpes simplex virus glycoprotein H (gH) is one of the four virion envelope proteins which are required for virus entry and for cell-cell fusion in a transient system. In this report, the role of the transmembrane and cytoplasmic tail domains of gH in membrane fusion was investigated by generating chimeric constructs in which these regions were replaced with analogous domains from other molecules and by introducing amino acid substitutions within the membrane-spanning sequence. gH molecules which lack the authentic transmembrane domain or cytoplasmic tail were unable to mediate cell-cell fusion when coexpressed with gB, gD, and gL and were unable to rescue the infectivity of a gH-null virus as efficiently as a wild-type gH molecule. Many amino acid substitutions of specific amino acid residues within the transmembrane domain also affected cell-cell fusion, in particular, those introduced at a conserved glycine residue. Some gH mutants that were impaired in cell-cell fusion were nevertheless able to rescue the infectivity of a gH-negative virus, but these pseudotyped virions entered cells more slowly than wild-type virions. These results indicate that the fusion event mediated by the coexpression of gHL, gB, and gD in cells shares common features with the fusion of the virus envelope with the plasma membrane, they point to a likely role for the membrane-spanning and cytoplasmic tail domains of gH in both processes, and they suggest that a conserved glycine residue in the membrane-spanning sequence is crucial for efficient fusion.  相似文献   

7.
In this study, we investigated the role of the conserved neuraminidase (NA) cytoplasmic tail residues in influenza virus replication. Mutants of influenza A virus (A/WSN/33 [H1N1]) with deletions of the NA cytoplasmic tail region were generated by reverse genetics. The resulting viruses, designated NOTAIL, contain only the initiating methionine of the conserved six amino-terminal residues. The mutant viruses grew much less readily and produced smaller plaques than did the wild-type virus. Despite similar levels of NA cell surface expression by the NOTAIL mutants and wild-type virus, incorporation of mutant NA molecules into virions was decreased by 86%. This reduction resulted in less NA activity per virion, leading to the formation of large aggregates of progeny mutant virions on the surface of infected cells. A NOTAIL virus containing an additional mutation (Ser-12 to Pro) in the transmembrane domain incorporated three times more NA molecules into virions than did the NOTAIL parent but approximately half of the amount incorporated by the wild-type virus. However, aggregation of the progeny virions still occurred at the cell surface. All NOTAIL viruses were attenuated in mice. We conclude that the cytoplasmic tail of NA is not absolutely essential for virus replication but exerts important effects on the incorporation of NA into virions and thus on the aggregation and virulence of progeny virus. In addition, the relative abundance of long filamentous particles formed by the NOTAIL mutants, compared with the largely spherical wild-type particles, indicates a role for the NA cytoplasmic tail in virion morphogenesis.  相似文献   

8.
Cadherins are transmembrane glycoproteins involved in Ca2+-dependent cell–cell adhesion. Deletion of the COOH-terminal residues of the E-cadherin cytoplasmic domain has been shown to abolish its cell adhesive activity, which has been ascribed to the failure of the deletion mutants to associate with catenins. Based on our present results, this concept needs revision. As was reported previously, leukemia cells (K562) expressing E-cadherin with COOH-terminal deletion of 37 or 71 amino acid residues showed almost no aggregation. Cells expressing E-cadherin with further deletion of 144 or 151 amino acid residues, which eliminates the membrane-proximal region of the cytoplasmic domain, showed E-cadherin–dependent aggregation. Thus, deletion of the membrane-proximal region results in activation of the nonfunctional E-cadherin polypeptides. However, these cells did not show compaction. Chemical cross-linking revealed that the activated E-cadherin polypeptides can be cross-linked to a dimer on the surface of cells, whereas the inactive polypeptides, as well as the wild-type E-cadherin polypeptide containing the membrane-proximal region, can not. Therefore, the membrane-proximal region participates in regulation of the adhesive activity by preventing lateral dimerization of the extracellular domain.  相似文献   

9.
The p62/E2 protein of Semliki Forest virus (SFV) is a typical transmembrane glycoprotein, with an amino-terminal lumenal domain, a transmembrane (hydrophobic) domain, and a carboxy-terminal cytoplasmic domain (or tail). Our hypothesis has been that the membrane-binding polypeptide region (membrane anchor) of this protein consists of both the transmembrane domain and the adjacent positively charged peptide, Arg-Ser-Lys, which is part of the cytoplasmic domain. We have investigated three anchor mutants of the p62 protein with respect to both their disposition and their stability in cell membranes. The construction of the three mutants has been described (Cutler, D.F., and H. Garoff, J. Cell Biol., 102:889-901). They are as follows: A1, changing the basic charge cluster from Arg-Ser-Lys(+2) to Gly-Ser-Glu(-1); A2, replacing an Ala in the middle of the hydrophobic stretch with a Glu; A3, changing the charge cluster from Arg-Ser-Lys(+2) to Gly-Ser-Met(0). All three mutants retain the transmembrane configuration of the wild-type p62. In a cell homogenate they have a cytoplasmic domain that is accessible to protease. In living cells an anti-peptide antibody specific for the cytoplasmic tail of p62 reacts with the tails of both wild-type and mutant p62s following its introduction into the cytoplasm. All three mutant proteins have Triton X-114 binding properties similar to the wild-type p62. However, when the membranes of cells expressing the three mutants or the wild-type p62 protein are washed with sodium carbonate, pH 11.5, three to four times as much mutant protein as wild-type p62 is released from the membranes. Thus the stability in cell membranes of the three mutant p62 proteins is significantly reduced.  相似文献   

10.
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

11.
Directed and Brownian movement of class I major histocompatibility complex (MHC) molecules on cell membranes is implicated in antigen presentation. Previous studies indicated that the class I MHC cytoplasmic tail imposes constraints on the molecule's diffusion. Here we used single particle tracking to study the mobility of the wild-type mouse H-2L(d) class I MHC molecule and of seven cytoplasmic tail variants. Six of the variants have cytoplasmic tails of four or seven residues (differing in net charge), and one is tailless, yet all are susceptible to confinement in membrane domains. However, truncation of the cytoplasmic tail to 0-4 residues decreases the proportion of particles exhibiting confined diffusion and increases the proportion exhibiting simple diffusion. Particularly for the truncated mutants (tail length of 0-7 residues), many of the particles have complex trajectories and do not move at a constant speed or in the same mode of diffusion throughout the observation period. Several particles of the tailless H-2L(d) mutant display a type of directed diffusion that is rarely observed for other H-2L(d) mutants. Taken together, these data show that even short cytoplasmic tails can influence markedly class I MHC mobility and that cytoplasmic tail length and sequence affect the molecule's diffusion in the membrane.  相似文献   

12.
The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.  相似文献   

13.
The Q7 alpha 3 domain alters T cell recognition of class I antigens.   总被引:1,自引:0,他引:1  
In this study we have analyzed the role of the alpha 3 domain of class I molecules in T cell recognition. Using the laboratory engineered molecules LLQQ (alpha 1/alpha 2 from Ld, alpha 3, and phosphatidyl inositol (PI) linked C terminus from Q7) and LLQL (alpha 1/alpha 2 from Ld, alpha 3 from Q7, transmembrane (TM) and cytoplasmic domains from Ld) we show that these molecules are not recognized by primary Ld-specific CTL. The cell membrane expression of both Ld and LLQL are upregulated by co-culture with an exogenously supplied murine cytomegalovirus-derived peptide indicating that the Q7 alpha 3 domain does not interfere with binding of Ag to alpha 1/alpha 2. However, only peptide pulsed Ld but not LLQL target cells are recognized by Ld-restricted-peptide specific CTL. In contrast to the above results, LLQL and LLQQ molecules can be recognized by bulk alloreactive anti-Ld CTL and 2/3 of CTL clones derived from in vivo primed mice. The fact that these secondary CTL recognize LLQQ indicates that a PI linkage is permissive for presentation of class I epitopes to alloreactive CTL. These secondary CTL are resistant to blocking at the effector stage by mAb against CD8 and express relatively low levels of membrane CD8 molecules compared to CTL from unprimed mice. Further, culture of unprimed CTL precursors in the presence of CD8 mAb also allows for the generation of CD8-independent CTL that recognize LLQL. Taken together, these data indicate that the alpha 3 domain of Q7 (Qa-2) prevents CD8-dependent CTL from recognizing Ld, regardless of whether the class I molecule is attached to the cell surface by a PI moiety or as a membrane spanning protein domain. We hypothesize that this defect in recognition is most likely due to an inability of CD8 to interact efficiently with the Q7 alpha 3 domain and could account for why Q7 molecules do not serve as restricting elements for virus and minor H-Ag-specific CTL.  相似文献   

14.
A truncated H-2Ld gene was constructed by deleting the transmembrane and cytoplasmic exons. The truncated H-2Ld gene was introduced into mouse L cells using the thymidine kinase gene as a selectable marker. Transformants were isolated and screened for the presence of truncated H-2Ld antigen. The truncated H-2Ld gene product was present in both the cytoplasm and culture medium, but not on the cell surface. The truncated H-2Ld antigen was stable in culture medium for at least 9 h and was secreted into the medium at a rate similar to the kinetics with which complete H-2 antigens reach the cell surface. Transformants expressing the truncated H-2Ld molecule were not recognized by cytotoxic T lymphocytes specific for the H-2Ld antigen.  相似文献   

15.
Truncated variants of the gene encoding H-2Ld, an integral membrane protein encoded by the major histocompatibility complex, were constructed by in vitro mutagenesis to elucidate the function of charged amino acids found on the cytoplasmic side of the transmembrane (TM) region. Analysis of cloned L cells transfected with these genes shows that the seven amino acids following the TM segment, four of which are basic, enhance the cell surface expression of H-2Ld protein but are not required for it. However, some clones do not express a tailless H-2Ld protein on the cell surface but express it intracellularly where it has a long half-life. Turnover measurements on cell surface H-2Ld proteins suggest that the basic residues following the TM segment are not a "stop transfer" sequence (Blobel, G., 1980, Proc. Natl. Acad. Sci. USA., 77:1496-1500) which anchors the H-2Ld protein in the membrane. Pulse-chase and endoglycosidase H sensitivity studies show that H-2Ld proteins lacking some or all of the basic residues and H-2Ld proteins which have a full-length cytoplasmic tail are processed with different kinetics. These results suggest an involvement of the membrane-proximal region of the cytoplasmic tail in the intracellular transport of H-2Ld. We further suggest that the L cell clones which do and do not express a tailless H-2Ld protein on the cell surface differ in the ability to transport a tailless integral membrane protein to the cell surface.  相似文献   

16.
《The Journal of cell biology》1995,130(6):1297-1306
The bovine cation-dependent mannose 6-phosphate receptor (CD-MPR) is a type 1 transmembrane protein that cycles between the trans-Golgi network, endosomes, and the plasma membrane. When the terminal 40 residues were deleted from the 67-amino acid cytoplasmic tail of the CD- MPR, the half-life of the receptor was drastically decreased and the mutant receptor was recovered in lysosomes. Analysis of additional cytoplasmic tail truncation mutants and alanine-scanning mutants implicated amino acids 34-39 as being critical for avoidance of lysosomal degradation. The cytoplasmic tail of the CD-MPR was partially effective in preventing the lysosomal membrane protein Lamp1 from entering lysosomes. Complete exclusion required both the CD-MPR cytoplasmic tail and transmembrane domain. The transmembrane domain alone had just a minor effect on the distribution of Lamp1. These findings indicate that the cytoplasmic tail of the CD-MPR contains a signal that prevents the receptor from trafficking to lysosomes. The transmembrane domain of the CD-MPR also contributes to this function.  相似文献   

17.
H Park  M Inouye 《Journal of bacteriology》1997,179(13):4382-4390
EnvZ, a transmembrane signal transducer, is composed of a periplasmic sensor domain, transmembrane domains, and a cytoplasmic signaling domain. Between the second transmembrane domain and the cytoplasmic signaling domain there is a linker domain consisting of approximately 50 residues. In this study, we investigated the functional role of the EnvZ linker domain with respect to signal transduction. Amino acid sequence alignment of linker regions among various bacterial signal transducer proteins does not show a high sequence identity but suggests a common helix 1-loop-helix 2 structure. Among several mutations introduced in the EnvZ linker region, it was found that hydrophobic-to-charged amino acid substitutions in helix 1 and helix 2 and deletions in helix 1, loop, and helix 2 (delta14, delta8, and delta7) resulted in constitutive OmpC expression. In the linker mutant EnvZ x delta7, both kinase and phosphatase activities were significantly reduced but the ratio of kinase to phosphatase activity increased, consistent with the constitutive OmpC expression. In contrast, the purified cytoplasmic fragment of EnvZ x delta7 possessed both kinase and phosphatase activities at levels similar to those of the cytoplasmic fragment of wild-type EnvZ. In addition, the linker mutations had no direct effect on EnvZ C-terminal dimerization. These results together with previous data suggest that the linker region is not directly involved in EnvZ enzymatic activities and that it may have a crucial role in propagating a conformational change to ensure correct positioning of two EnvZ molecules within a dimer during the transmembrane signaling.  相似文献   

18.
Phosphorylation of tyrosine residues on platelet-endothelial cell adhesion molecule-1 (PECAM-1), followed by signal transduction events, has been described in endothelial cells following exposure to hyperosmotic and fluid shear stress. However, it is unclear whether PECAM-1 functions as a primary mechanosensor in this process. Utilizing a PECAM-1-null EC-like cell line, we examined the importance of cellular localization and the extracellular and transmembrane domains in PECAM-1 phosphorylation responses to mechanical stress. Tyrosine phosphorylation of PECAM-1 was stimulated in response to mechanical stress in null cells transfected either with full length PECAM-1 or with PECAM-1 mutants that do not localize to the lateral cell-cell adhesion site and that do not support homophilic binding between PECAM-1 molecules. Furthermore, null cells transfected with a construct that contains the intact cytoplasmic domain of PECAM-1 fused to the extracellular and transmembrane domains of the interleukin-2 receptor also underwent mechanical stress-induced PECAM-1 tyrosine phosphorylation. These findings suggest that mechanosensitive PECAM-1 may lie downstream of a primary mechanosensor that activates a tyrosine kinase.  相似文献   

19.
Megumi Hirono 《BBA》2007,1767(7):930-939
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14−17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

20.
Chan WE  Wang YL  Lin HH  Chen SS 《Journal of virology》2004,78(10):5157-5169
The biological significance of the presence of a long cytoplasmic domain in the envelope (Env) transmembrane protein gp41 of human immunodeficiency virus type 1 (HIV-1) is still not fully understood. Here we examined the effects of cytoplasmic tail elongation on virus replication and characterized the role of the C-terminal cytoplasmic tail in interactions with the Gag protein. Extensions with six and nine His residues but not with fewer than six His residues were found to severely inhibit virus replication through decreased Env electrophoretic mobility and reduced Env incorporation compared to the wild-type virus. These two mutants also exhibited distinct N glycosylation and reduced cell surface expression. An extension of six other residues had no deleterious effect on infectivity, even though some mutants showed reduced Env incorporation into the virus and/or decreased cell surface expression. We further show that these elongated cytoplasmic tails in a format of the glutathione S-transferase fusion protein still interacted effectively with the Gag protein. In addition, the immediate C terminus of the cytoplasmic tail was not directly involved in interactions with Gag, but the region containing the last 13 to 43 residues from the C terminus was critical for Env-Gag interactions. Taken together, our results demonstrate that HIV-1 Env can tolerate extension at its C terminus to a certain degree without loss of virus infectivity and Env-Gag interactions. However, extended elongation in the cytoplasmic tail may impair virus infectivity, Env cell surface expression, and Env incorporation into the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号