首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For rough quantitative analysis of genetically modified maize contents, rapid methods for measurement of the copy numbers of the cauliflower mosaic virus 35S promoter region (P35S) and MON810 construct-specific gene (MON810) using a combination of a capillary-type real-time PCR system with a plasmid DNA were established. To reduce the characteristic differences between the plasmid DNA and genomic DNA, we showed that pretreatment of the extracted genomic DNA by a combination of sonication and restriction endonuclease digestion before measurement is effective. The accuracy and reproducibility of this method for MON810 content (%) at a level of 5.0% MON810 mixed samples were within a range from 4.26 to 5.11% in the P35S copy number quantification. These methods should prove to be a useful tool to roughly quantify GM maize content.  相似文献   

2.
Reliable quantitative methods are needed to comply with current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) and GMO-derived food and feed products with a minimum GMO content of 0.9 %. The implementation of EU Commission Recommendation 2004/787/EC on technical guidance for sampling and detection which meant as a helpful tool for the practical implementation of EC Regulation 1830/2003, which states that “the results of quantitative analysis should be expressed as the number of target DNA sequences per target taxon specific sequences calculated in terms of haploid genomes”. This has led to an intense debate on the type of calibrator best suitable for GMO quantification. The main question addressed in this review is whether reference materials and calibrators should be matrix based or whether pure DNA analytes should be used for relative quantification in GMO analysis. The state of the art, including the advantages and drawbacks, of using DNA plasmid (compared to genomic DNA reference materials) as calibrators, is widely described. In addition, the influence of the genetic structure of seeds on real-time PCR quantitative results obtained for seed lots is discussed. The specific composition of a seed kernel, the mode of inheritance, and the ploidy level ensure that there is discordance between a GMO % expressed as a haploid genome equivalent and a GMO % based on numbers of seeds. This means that a threshold fixed as a percentage of seeds cannot be used as such for RT-PCR. All critical points that affect the expression of the GMO content in seeds are discussed in this paper.  相似文献   

3.
For rough quantitative analysis of genetically modified maize contents, rapid methods for measurement of the copy numbers of the cauliflower mosaic virus 35S promoter region (P35S) and MON810 construct-specific gene (MON810) using a combination of a capillary-type real-time PCR system with a plasmid DNA were established. To reduce the characteristic differences between the plasmid DNA and genomic DNA, we showed that pretreatment of the extracted genomic DNA by a combination of sonication and restriction endonuclease digestion before measurement is effective. The accuracy and reproducibility of this method for MON810 content (%) at a level of 5.0% MON810 mixed samples were within a range from 4.26 to 5.11% in the P35S copy number quantification. These methods should prove to be a useful tool to roughly quantify GM maize content.  相似文献   

4.
To ensure the implementation of genetically modified organism (GMO)-labeling regulations, an event-specific detection method was developed based on the junction sequence of an exogenous integrant in the transgenic carnation variety Moonlite. The 5'-transgene integration sequence was isolated by thermal asymmetric interlaced PCR. Based upon the 5'-transgene integration sequence, the event-specific primers and TaqMan probe were designed to amplify the fragments, which spanned the exogenous DNA and carnation genomic DNA. Qualitative and quantitative PCR assays were developed employing the designed primers and probe. The detection limit of the qualitative PCR assay was 0.05% for Moonlite in 100 ng total carnation genomic DNA, corresponding to about 79 copies of the carnation haploid genome; the limit of detection and quantification of the quantitative PCR assay were estimated to be 38 and 190 copies of haploid carnation genomic DNA, respectively. Carnation samples with different contents of genetically modified components were quantified and the bias between the observed and true values of three samples were lower than the acceptance criterion (<25%) of the GMO detection method. These results indicated that these event-specific methods would be useful for the identification and quantification of the GMO carnation Moonlite.  相似文献   

5.
转基因产品检测方法概述   总被引:5,自引:0,他引:5  
随着转基因技术的快速发展,转基因生物及其产品日益增多,但其安全性问题引起了国际社会的广泛关注。转基因产品的检测已纳入国内外检验检疫部门的检测项目,采用的检测方法是建立在已商品化生产的转基因生物外源基因的构建及表达情况的基础上的,包括蛋白质检测和DNA检测方法。蛋白质检测方法有ELISA、试纸条、免疫PCR等,DNA检测方法有PCR、多重PCR、PCR-EUSA、PCR-GeneScan、荧光定量PCR、基因芯片等。  相似文献   

6.
Based on the DNA sequences of the junctions between recombinant and cotton genomic DNA of the two genetically modified (GM) cotton varieties, herbicide-tolerance Mon1445 and insect-resistant Mon531, event-specific primers and probes for qualitative and quantitative PCR detection for both GM cotton varieties were designed, and corresponding detection methods were developed. In qualitative PCR detection, the simplex and multiplex PCR detection systems were established and employed to identify Mon1445 and Mon531 from other GM cottons and crops. The limits of detection (LODs) of the simplex PCR were 0.05% for both Mon1445 and Mon531 using 100 ng DNA templates in one reaction, and the LOD of multiplex PCR analysis was 0.1%. For further quantitative detection using TaqMan real-time PCR systems for Mon1445 and Mon531, one plasmid pMD-ECS, used as reference molecule was constructed, which contained the quantitative amplified fragments of Mon1445, Mon531, and cotton endogenous reference gene. The limits of quantification (LOQs) of Mon1445 and Mon531 event-specific PCR systems using plasmid pMD-ECS as reference molecule were 10 copies, and the quantification range was from 0.03 to 100% in 100 ng of the DNA template for one reaction. Thereafter, five mixed cotton samples containing 0, 0.5, 0.9, 3 and 5% Mon1445 or Mon531 were quantified using established real-time PCR systems to evaluate the accuracy and precision of the developed real-time PCR detection systems. The accuracy expressed as bias varied from 1.33 to 8.89% for tested Mon1445 cotton samples, and from 2.67 to 6.80% for Mon531. The precision expressed as relative standard deviations (RSD) were different from 1.13 to 30.00% for Mon1445 cotton, and from 1.27 to 24.68% for Mon531. The range of RSD was similar to other laboratory results (25%). Concluded from above results, we believed that the established event-specific qualitative and quantitative PCR systems for Mon1445 and Mon531 in this study are acceptable and suitable for GM cotton identification and quantification.  相似文献   

7.
转基因作物的食用安全和环境安全一直受到消费者与各国政府及相关机构人员高度重视。质粒标准分子是转基因核酸量值的载体,为实现转基因植物核酸量值准确性、可比性和有效性提供保障。描述了转基因水稻克螟稻2号质粒标准分子(pKMD2)的研制过程,包括质粒构建、特异性、均匀性、稳定性、可替代性和量值及不确定度评价等方面。量值结果表明pKMD2质粒标准分子所含两个基因片段比值为1.032,不确定度为0.032,可以替代基因组作为阳性标准品用于实验室质控、含量检测及贸易争端等领域。  相似文献   

8.
A new real-time PCR method using capturing oligo-immobilized PCR tubes is described. This method was used to detect specific genes for soybean and genetically modified (GM) soybean in food matrices. In a standard reaction using soybean genomic DNA and a capturing oligo for the lectin gene (Le1) immobilized on the tube, we examined the effects of such hybridization conditions as the location, length, and amount of the capturing oligo, and the incubation time and temperature. Under optimized conditions, the copy number of Le1 was determined in a concentration-dependent manner from soybean genomic DNA and soybean lysate (DNA 10-1000 ng, r=0.99; lysate 1-100%, r=0.99). The copy number of a Roundup Ready soybean (RRS) gene was also successfully detected in a concentration-dependent manner (1-100%, r=0.99) from GM soybean lysate, using PCR tubes with an immobilized capturing oligo for the transgene. Our data indicate that this is a rapid and simple method to determine specific genes for soybean and GM soybean in food matrices.  相似文献   

9.

Background  

Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available.  相似文献   

10.
A standard plasmid containing eight targets was developed for quantitative detection of genetically modified (GM) soybeans and cotton. These eight targets were joined in tandem to form the pTLE8 plasmid with a length of 3,680 bp. This plasmid contains part of the endogenous soybean Lec1 gene, the Cauliflower mosaic virus (CaMV) 35S promoter, the Agrobacterium tumefaciens nopaline synthase (NOS) terminator, the PAT gene of the soybean line A2704-12, the event-specific 5′-junction region of Roundup-Ready Soya (RRS, 35SG), the Cry1A(c) gene from Bacillus thuringiensis (Bt), the endogenous cotton Sad1 gene, and a part of RRS EPSPS gene. The PCR efficiencies with pTLE8 as a calibrator ranged from 99.4% to 100.2% for the standard curves of the RRS EPSPS gene and the taxon-specific Lec1 gene (R 2 ≥ 0.996). The limits of detection and quantification were nine and 15 copies, respectively. The standard deviation (SD) and relative standard deviation (RSD) values of repeatability were from 0.09 to 0.52 and from 0.28% to 2.11%, and those for reproducibility were from 0.12 to 1.15 and 0.42% to 3.85%, respectively. The average conversion factor (Cf) for the CRMs RRS quantification was 0.91. The RSD of the mean values for known samples ranged from 3.09% to 18.53%, and the biases were from 0.5% to 40%. These results show that our method using the pTLE8 plasmid as a reference material (RM) is reliable and feasible in the identification of GM soybeans, thus paving the way for the establishment of identification management systems for various products containing GMO components.  相似文献   

11.
A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.  相似文献   

12.

Key message

Here, we describe a new developed quantitative real-time PCR method for the detection and quantification of a new specific endogenous reference gene used in GMO analysis.

Abstract

The key requirement of this study was the identification of a new reference gene used for the differentiation of the four genomic sections of the sugar beet (Beta vulgaris L.) (Beta, Corrollinae, Nanae and Procumbentes) suitable for quantification of genetically modified sugar beet. A specific qualitative polymerase chain reaction (PCR) assay was designed to detect the sugar beet amplifying a region of the adenylate transporter (ant) gene only from the species of the genomic section I of the genus Beta (cultivated and wild relatives) and showing negative PCR results for 7 species of the 3 other sections, 8 related species and 20 non-sugar beet plants. The sensitivity of the assay was 15 haploid genome copies (HGC). A quantitative real-time polymerase chain reaction (QRT-PCR) assay was also performed, having high linearity (R 2 > 0.994) over sugar beet standard concentrations ranging from 20,000 to 10 HGC of the sugar beet DNA per PCR. The QRT-PCR assay described in this study was specific and more sensitive for sugar beet quantification compared to the validated test previously reported in the European Reference Laboratory. This assay is suitable for GMO quantification in routine analysis from a wide variety of matrices.  相似文献   

13.
Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1–10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions.  相似文献   

14.
转基因产品(genetically modified organis, GMO)标识是为了表明该产品由转基因生物生产、加工而成的特殊标识,即标识产品中含有转基因成分。21世纪以来,全球共有60多个国家种植转基因作物,随之出现大量转基因产品。其标识问题关乎消费者的知情权和选择权而备受公众关注。一方面,随着全球转基因技术研发和应用的不断推进,国际上对转基因产品的标识管理更加关注与重视;另一方面,我国正处在有序推进生物育种产业化的关键期,转基因产品标识管理制度的与时俱进至关重要。2019年全球共有29个国家种植转基因作物,种植面积位列前十的国家依次是美国、巴西、阿根廷、加拿大、印度、巴拉圭、中国、南非、巴基斯坦以及玻利维亚,这10个国家的转基因作物总种植面积占全球总种植面积的97.9%。以其他9个国家的转基因标识管理制度为切入点,分析不同国家及不同标识类别的特点,旨在为我国的转基因产品标识管理工作提供启示与参考。  相似文献   

15.
The increasing presence of transgenic plant derivatives in a wide range of animal and human consumables has provoked in western Europe a strong demand for appropriate detection methods to evaluate the existence of transgenic elements. Among the different techniques currently used, the real-time quantitative PCR is a powerful technology well adapted to the mandatory labeling requirements in the European Union (EU). The use of transgene flanking genomic sequences has recently been suggested as a means to avoid ambiguous results both in qualitative and quantitative PCR-based technologies. In this study we report the identification of genomic sequences adjacent to the 3-integration site of event MON810 in transgenic maize. This genetically modified crop contains transgene sequences leading to ectopic expression of a synthetic CryIA(b) endotoxin which confers resistance to lepidopteran insects especially against the European corn borer. The characterization of the genome–transgene junction sequences by means of TAIL-PCR has facilitated the design of a specific, sensitive and accurate quantification method based on TaqMan chemistry. Cloning of event MON810 3-junction region has also allowed to compare the suitability of plasmid target sequences versus genomic DNA obtained from certified reference materials (CRMs), to prepare standard calibration curves for quantification.  相似文献   

16.
Yang R  Xu W  Luo Y  Guo F  Lu Y  Huang K 《Plant cell reports》2007,26(10):1821-1831
With the development of genetically modified organisms, labeling regulations have been introduced, which require appropriate detection methods. Event-specific qualitative and quantitative polymerase chain reaction (PCR) detection methods have become the internationally agreed state-of-art. This paper describes an event-specific PCR method for qualitative and quantitative of Roundup Ready canola event GT73. The 3′-integration junction was characterized by two methods: inverse-PCR and thermal asymmetric interlaced-PCR. In the conventional qualitative PCR assay, the event-specific primers designed were confirmed to be specific and the limit of detection (LOD) was 0.05% (approximates to ten haploid genome copies). In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were five and ten haploid genome copies, respectively. In addition, for further quantitative detection, a reference molecule which contained the canola endogenous gene and event-specific sequence was constructed and standard curves were set up. The goodness of the linearity and high efficiency of the PCR reaction indicated the usability of the plasmid and the established PCR system. Moreover, mixed samples with different GT73 content (6, 3, 1 and 0.5%) were quantified using the established real-time PCR system to evaluate the trueness and precision of the system. The trueness expressed as bias varied from 2.00 to 18.00%. The precision expressed as variation coefficient were different from 6.40 to 32.95%. From above results, we believed that the established event-specific qualitative and quantitative PCR systems for GT73 in this study were acceptable and suitable for genetic modified canola detection. Rong Yang, Wentao Xu and Yunbo Luo contributed equally.  相似文献   

17.
The safety of genetically modified organisms (GMOs) has attracted much attention recently. Polymerase chain reaction (PCR) amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS). The cauliflower mosaic virus 35S (CaMV35S) promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 µg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids.  相似文献   

18.

Background

According to Regulation (EU) No 619/2011, trace amounts of non-authorised genetically modified organisms (GMO) in feed are tolerated within the EU if certain prerequisites are met. Tolerable traces must not exceed the so-called ‘minimum required performance limit’ (MRPL), which was defined according to the mentioned regulation to correspond to 0.1% mass fraction per ingredient. Therefore, not yet authorised GMO (and some GMO whose approvals have expired) have to be quantified at very low level following the qualitative detection in genomic DNA extracted from feed samples. As the results of quantitative analysis can imply severe legal and financial consequences for producers or distributors of feed, the quantification results need to be utterly reliable.

Results

We developed a statistical approach to investigate the experimental measurement variability within one 96-well PCR plate. This approach visualises the frequency distribution as zygosity-corrected relative content of genetically modified material resulting from different combinations of transgene and reference gene Cq values. One application of it is the simulation of the consequences of varying parameters on measurement results. Parameters could be for example replicate numbers or baseline and threshold settings, measurement results could be for example median (class) and relative standard deviation (RSD). All calculations can be done using the built-in functions of Excel without any need for programming. The developed Excel spreadsheets are available (see section ‘Availability of supporting data’ for details). In most cases, the combination of four PCR replicates for each of the two DNA isolations already resulted in a relative standard deviation of 15% or less.

Conclusions

The aims of the study are scientifically based suggestions for minimisation of uncertainty of measurement especially in —but not limited to— the field of GMO quantification at low concentration levels. Four PCR replicates for each of the two DNA isolations seem to be a reasonable minimum number to narrow down the possible spread of results.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0407-x) contains supplementary material, which is available to authorized users.  相似文献   

19.
实时荧光定量PCR技术在转基因食品检测领域中的应用   总被引:1,自引:0,他引:1  
随着基因工程技术在农业生产中应用的深入,越来越多具有改良特征的转基因植物在全球范围内得到广泛种植,随之而来的转基因食品也迅猛发展,转基因产品大规模商业化引起了对安全性问题的担忧。为保证转基因产品标签制度的顺利实施,建立快速、准确、高通量的定量检测方法十分必要。我们综述了国内外转基因食品检测技术的研究进展,重点阐述了实时荧光定量PCR技术在转基因食品检测领域中的应用,并展望了通过构建质粒标准分子的方法来实现对更多转基因植物品系的定量检测。  相似文献   

20.
Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号