首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous somatic patch-pipette recording of a single astrocyte to evoke voltage-gated calcium currents, and Ca(2+) imaging, were used to study the spatial and temporal profiles of depolarization-induced changes in intracellular Ca(2+) ([Ca(2+)](i)) in the processes of cultured rat cortical astrocytes existing as pairs. Transient Ca(2+) changes locked to depolarization were observed as microdomains in the processes of the astrocyte pairs, and the responses were more pronounced in the adjoining astrocyte. Considering the functional significance of higher concentrations of glutamate observed in certain pathological conditions, Ca(2+) transients were recorded following pretreatment of cells with glutamate (500 microM for 20 min). This showed distance-dependent incremental scaling and attenuation in the presence of the metabotropic glutamate receptor (mGluR) antagonist, alpha-methyl(4-carboxy-phenyl) glycine (MCPG). Estimation of local Ca(2+) diffusion coefficients in the astrocytic processes indicated higher values in the adjoining astrocyte of the glutamate pretreated group. Intracellular heparin introduced into the depolarized astrocyte did not affect the Ca(2+) transients in the heparin-loaded astrocyte but attenuated the [Ca(2+)](i) responses in the adjoining astrocyte, suggesting that inositol 1,4,5 triphosphate (IP(3)) may be the transfer signal. The uncoupling agent, 1-octanol, attenuated the [Ca(2+)](i) responses in both the control and glutamate pretreated astrocytes, indicating the role of gap junctional communication. Our studies indicate that individual astrocytes have distinct functional domains, and that the glutamate-induced alterations in Ca(2+) signaling involve a sequence of intra- and intercellular steps in which phospholipase C (PLC), IP(3), internal Ca(2+) stores, VGCC and gap junction channels appear to play an important role.  相似文献   

2.
Although Zn(2+) homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn(2+) concentration ([Zn(2+) ](i)) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn(2+)](i) and intracellular Ca(2+) concentration were monitored simultaneously using FluoZin-3 and Fura-2FF, and intracellular pH (pH(i)) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na(+)-free conditions (Na(+) substituted with N-methyl-D-glucamine(+)) caused Ca(2+) influx, pH(i) drop, and Zn(2+) release from intracellular stores. Experimental maneuvers resulting in a pH(i) increase during Glu/Gly applications, such as stimulation of Na(+) -dependent pathways of H(+) efflux, forcing H(+) efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn(2+)](i) elevations. In the absence of Na(+), the rate of [Zn(2+)](i) decrease could be correlated with the rate of pH(i) increase. In the presence of Na(+), the rate of [Zn(2+) ](i) decrease was about twice as fast as expected from the rate of pH(i) elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn(2+) ](i) elevations and that Na(+) counteracts the latter by promoting pH(i)-dependent and pH(i)-independent mechanisms of cytosolic Zn(2+) clearance.  相似文献   

3.
Glutamate-stimulated, astrocyte-derived carbon monoxide (CO) causes cerebral arteriole dilation by activating smooth muscle cell large-conductance Ca(2+)-activated K(+) channels. Here, we examined the hypothesis that glutamate activates heme oxygenase (HO)-2 and CO production via the intracellular Ca(2+) concentration ([Ca(2+)](i))/Ca(2+)-calmodulin signaling pathway in newborn pig astrocytes. The major findings are: 1) glutamate stimulated Ca(2+) transients and increased steady-state [Ca(2+)](i) in cerebral cortical astrocytes in primary culture, 2) in astrocytes permeabilized with ionomycin, elevation of [Ca(2+)](i) concentration-dependently increased CO production, 3) glutamate did not affect CO production at any [Ca(2+)](i) when the [Ca(2+)](i) was held constant, 4) thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase blocker, decreased basal CO production and blocked glutamate-induced increases in CO, and 5) calmidazolium, a calmodulin inhibitor, blocked CO production induced by glutamate and by [Ca(2+)](i) elevation. Taken together, our data are consistent with the hypothesis that glutamate elevates [Ca(2+)](i) in astrocytes, leading to Ca(2+)- and calmodulin-dependent HO-2 activation, and CO production.  相似文献   

4.
A rise in intracellular free Ca(2+) concentration ([Ca(2+)](i)) is required to activate sperm of all organisms studied. Such elevation of [Ca(2+)](i) can occur either by influx of extracellular Ca(2+) or by release of Ca(2+) from intracellular stores. We have examined these sources of Ca(2+) in sperm from the sea squirt Ascidia ceratodes using mitochondrial translocation to evaluate activation and the Ca(2+)-sensitive dye fura-2 to monitor [Ca(2+)](i) by bulk spectrofluorometry. Sperm activation artificially evoked by incubation in high-pH seawater was inhibited by reducing seawater [Ca(2+)], as well as by the presence of high [K(+)](o) or the Ca channel blockers pimozide, penfluridol, or Ni(2+), but not nifedipine or Co(2+). The accompanying rise in [Ca(2+)](i) was also blocked by pimozide or penfluridol. These results indicate that activation produced by alkaline incubation involves opening of plasmalemmal voltage-dependent Ca channels and Ca(2+) entry to initiate mitochondrial translocation. Incubation in thimerosal or thapsigargin, but not ryanodine (even if combined with caffeine pretreatment), evoked sperm activation. Activation by thimerosal was insensitive to reduced external calcium and to Ca channel blockers. Sperm [Ca(2+)](i) increased upon incubation in high-pH or thimerosal-containing seawater, but only the high-pH-dependent elevation in [Ca(2+)](i) could be inhibited by pimozide or penfluridol. Treatment with the protonophore CCCP indicated that only a small percentage of sperm could release enough Ca(2+) from mitochondria to cause activation. Inositol 1,4,5-trisphosphate (IP(3)) delivered by liposomes or by permeabilization increased sperm activation. Both of these effects were blocked by heparin. We conclude that high external pH induces intracellular alkalization that directly or indirectly activates plasma membrane voltage-dependent Ca channels allowing entry of external Ca(2+) and that thimerosal stimulates release of Ca(2+) from IP(3)-sensitive intracellular stores.  相似文献   

5.
We analyzed the role of inositol 1,4,5-trisphosphate-induced Ca(2+) release from the endoplasmic reticulum (ER) (i) in powering mitochondrial Ca(2+) uptake and (ii) in maintaining a sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)). For this purpose, we expressed in HeLa cells aequorin-based Ca(2+)-sensitive probes targeted to different intracellular compartments and studied the effect of two agonists: histamine, acting on endogenous H(1) receptors, and glutamate, acting on co-transfected metabotropic glutamate receptor (mGluR1a), which rapidly inactivates through protein kinase C-dependent phosphorylation and thus causes transient inositol 1,4,5-trisphosphate production. Glutamate induced a transient [Ca(2+)](c) rise and drop in ER luminal [Ca(2+)] ([Ca(2+)](er)), and then the ER refilled with [Ca(2+)](c) at resting values. With histamine, [Ca(2+)](c) after the initial peak stabilized at a sustained plateau, and [Ca(2+)](er) decreased to a low steady-state value. In mitochondria, histamine evoked a much larger mitochondrial Ca(2+) response than glutamate ( approximately 15 versus approximately 65 microm). Protein kinase C inhibition, partly relieving mGluR1a desensitization, reestablished both the [Ca(2+)](c) plateau and the sustained ER Ca(2+) release and markedly increased the mitochondrial Ca(2+) response. Conversely, mitochondrial Ca(2+) uptake evoked by histamine was drastically reduced by very transient ( approximately 2-s) agonist applications. These data indicate that efficient mitochondrial Ca(2+) uptake depends on the preservation of high Ca(2+) microdomains at the mouth of ER Ca(2+) release sites close to mitochondria. This in turn depends on continuous Ca(2+) release balanced by Ca(2+) reuptake into the ER and maintained by Ca(2+) influx from the extracellular space.  相似文献   

6.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

7.
Cytosolic Ca(2+) ([Ca(2+)](i)) oscillations may be generated by the inositol 1,4,5-trisphosphate receptor (IP(3)R) driven through cycles of activation/inactivation by local Ca(2+) feedback. Consequently, modulation of the local Ca(2+) gradients influences IP(3)R excitability as well as the duration and amplitude of the [Ca(2+)](i) oscillations. In the present work, we demonstrate that the immunosuppressant cyclosporin A (CSA) reduces the frequency of IP(3)-dependent [Ca(2+)](i) oscillations in intact hepatocytes, apparently by altering the local Ca(2+) gradients. Permeabilized cell experiments demonstrated that CSA lowers the apparent IP(3) sensitivity for Ca(2+) release from intracellular stores. These effects on IP(3)-dependent [Ca(2+)](i) signals could not be attributed to changes in calcineurin activity, altered ryanodine receptor function, or impaired Ca(2+) fluxes across the plasma membrane. However, CSA enhanced the removal of cytosolic Ca(2+) by sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), lowering basal and inter-spike [Ca(2+)](i). In addition, CSA stimulated a stable rise in the mitochondrial membrane potential (DeltaPsi(m)), presumably by inhibiting the mitochondrial permeability transition pore, and this was associated with increased Ca(2+) uptake and retention by the mitochondria during a rise in [Ca(2+)](i). We suggest that CSA suppresses local Ca(2+) feedback by enhancing mitochondrial and endoplasmic reticulum Ca(2+) uptake, these actions of CSA underlie the lower IP(3) sensitivity found in permeabilized cells and the impaired IP(3)-dependent [Ca(2+)](i) signals in intact cells. Thus, CSA binding proteins (cyclophilins) appear to fine tune agonist-induced [Ca(2+)](i) signals, which, in turn, may adjust the output of downstream Ca(2+)-sensitive pathways.  相似文献   

8.
Recent evidence indicates the existence of a putative novel phosphatidylinositol-linked D1 dopamine receptor in brain that mediates phosphatidylinositol hydrolysis via activation of phospholipase Cbeta. The present work was designed to characterize the Ca(2+) signals regulated by this phosphatidylinositol-linked D(1) dopamine receptor in primary cultures of hippocampal neurons. The results indicated that stimulation of phosphatidylinositol-linked D1 dopamine receptor by its newly identified selective agonist SKF83959 induced a long-lasting increase in basal [Ca(2+)](i) in a time- and dose-dependent manner. Stimulation was observable at 0.1 microm and reached the maximal effect at 30 microm. The [Ca(2+)](i) increase induced by 1 microm SKF83959 reached a plateau in 5 +/- 2.13 min, an average 96 +/- 5.6% increase over control. The sustained elevation of [Ca(2+)](i) was due to both intracellular calcium release and calcium influx. The initial component of Ca(2+) increase through release from intracellular stores was necessary for triggering the late component of Ca(2+) rise through influx. We further demonstrated that activation of phospholipase Cbeta/inositol triphosphate was responsible for SKF83959-induced Ca(2+) release from intracellular stores. Moreover, inhibition of voltage-operated calcium channel or NMDA receptor-gated calcium channel strongly attenuated SKF83959-induced Ca(2+) influx, indicating that both voltage-operated calcium channel and NMDA receptor contribute to phosphatidylinositol-linked D(1) receptor regulation of [Ca(2+)](i).  相似文献   

9.
Zn(2+) plays an important role in diverse physiological processes, but when released in excess amounts it is potently neurotoxic. In vivo trans-synaptic movement and subsequent post-synaptic accumulation of intracellular Zn(2+) contributes to the neuronal injury observed in some forms of cerebral ischemia. Zn(2+) may enter neurons through NMDA channels, voltage-sensitive calcium channels, Ca(2+)-permeable AMPA/kainate (Ca-A/K) channels, or Zn(2+)-sensitive membrane transporters. Furthermore, Zn(2+) is also released from intracellular sites such as metallothioneins and mitochondria. The mechanisms by which Zn(2+) exerts its potent neurotoxic effects involve many signaling pathways, including mitochondrial and extra-mitochondrial generation of reactive oxygen species (ROS) and disruption of metabolic enzyme activity, ultimately leading to activation of apoptotic and/or necrotic processes. As is the case with Ca(2+), neuronal mitochondria take up Zn(2+) as a way of modulating cellular Zn(2+) homeostasis. However, excessive mitochondrial Zn(2+) sequestration leads to a marked dysfunction of these organelles, characterized by prolonged ROS generation. Intriguingly, in direct comparison to Ca(2+), Zn(2+) appears to induce these changes with a considerably greater degree of potency. These effects are particularly evident upon large (i.e., micromolar) rises in intracellular Zn(2+) concentration ([Zn(2+)](i)), and likely hasten necrotic neuronal death. In contrast, sub-micromolar [Zn(2+)](i) increases promote release of pro-apoptotic factors, suggesting that different intensities of [Zn(2+)](i) load may activate distinct pathways of injury. Finally, Zn(2+) homeostasis seems particularly sensitive to the environmental changes observed in ischemia, such as acidosis and oxidative stress, indicating that alterations in [Zn(2+)](i) may play a very significant role in the development of ischemic neuronal damage.  相似文献   

10.
Microfluorimetric measurements of intracellular calcium ion concentration [Ca(2+)](i) were employed to examine the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. Activation of muscarinic receptors evoked rises in [Ca(2+)](i) which were enhanced in chronically hypoxic cells. Transient rises of [Ca(2+)](i) evoked in Ca(2+)-free solutions were greater and decayed more slowly following exposure to chronic hypoxia. In control cells, these transient rises of [Ca(2+)](i) were also enhanced and slowed by removal of external Na(+), whereas the same manoeuvre did not affect responses in chronically hypoxic cells. Capacitative Ca(2+) entry, observed when re-applying Ca(2+) following depletion of intracellular stores, was suppressed in chronically hypoxic cells. Western blots revealed that presenilin-1 levels were unaffected by chronic hypoxia. Exposure of cells to amyloid beta peptide (1-40) also increased transient [Ca(2+)](i) rises, but did not mimic any other effects of chronic hypoxia. Our results indicate that chronic hypoxia causes increased filling of intracellular Ca(2+) stores, suppressed expression or activity of Na(+)/Ca(2+) exchange and reduced capacitative Ca(2+) entry. These effects are not attributable to increased amyloid beta peptide or presenilin-1 levels, but are likely to be important in adaptive cellular remodelling in response to prolonged hypoxic or ischemic episodes.  相似文献   

11.
Bile acids are known to induce Ca(2+) signals in pancreatic acinar cells. We have recently shown that phosphatidylinositol 3-kinase (PI3K) regulates changes in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) elicited by CCK by inhibiting sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). The present study sought to determine whether PI3K regulates bile acid-induced [Ca(2+)](i) responses. In pancreatic acinar cells, pharmacological inhibition of PI3K with LY-294002 or wortmannin inhibited [Ca(2+)](i) responses to taurolithocholic acid 3-sulfate (TLC-S) and taurochenodeoxycholate (TCDC). Furthermore, genetic deletion of the PI3K gamma-isoform also decreased [Ca(2+)](i) responses to bile acids. Depletion of CCK-sensitive intracellular Ca(2+) pools or application of caffeine inhibited bile acid-induced [Ca(2+)](i) signals, indicating that bile acids release Ca(2+) from agonist-sensitive endoplasmic reticulum (ER) stores via an inositol (1,4,5)-trisphosphate-dependent mechanism. PI3K inhibitors increased the amount of Ca(2+) in intracellular stores during the exposure of acinar cells to bile acids, suggesting that PI3K negatively regulates SERCA-dependent Ca(2+) reloading into the ER. Bile acids inhibited Ca(2+) reloading into ER in permeabilized acinar cells. This effect was augmented by phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), suggesting that both bile acids and PI3K act synergistically to inhibit SERCA. Furthermore, inhibition of PI3K by LY-294002 completely inhibited trypsinogen activation caused by the bile acid TLC-S. Our results indicate that PI3K and its product, PIP(3), facilitate bile acid-induced [Ca(2+)](i) responses in pancreatic acinar cells through inhibition of SERCA-dependent Ca(2+) reloading into the ER and that bile acid-induced trypsinogen activation is mediated by PI3K. The findings have important implications for the mechanism of acute pancreatitis since [Ca(2+)](i) increases and trypsinogen activation mediate key pathological processes in this disorder.  相似文献   

12.
Substance P (SP) plays an important role in pain transmission through the stimulation of the neurokinin (NK) receptors expressed in neurons of the spinal cord, and the subsequent increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) as a result of this stimulation. Recent studies suggest that spinal astrocytes also contribute to SP-related pain transmission through the activation of NK receptors. However, the mechanisms involved in the SP-stimulated [Ca(2+)](i) increase by spinal astrocytes are unclear. We therefore examined whether (and how) the activation of NK receptors evoked increase in [Ca(2+)](i) in rat cultured spinal astrocytes using a Ca(2+) imaging assay. Both SP and GR73632 (a selective agonist of the NK1 receptor) induced both transient and sustained increases in [Ca(2+)](i) in a dose-dependent manner. The SP-induced increase in [Ca(2+)](i) was significantly attenuated by CP-96345 (an NK1 receptor antagonist). The GR73632-induced increase in [Ca(2+)](i) was completely inhibited by pretreatment with U73122 (a phospholipase C inhibitor) or xestospongin C (an inositol 1,4,5-triphosphate (IP(3)) receptor inhibitor). In the absence of extracellular Ca(2+), GR73632 induced only a transient increase in [Ca(2+)](i). In addition, H89, an inhibitor of protein kinase A (PKA), decreased the GR73632-mediated Ca(2+) release from intracellular Ca(2+) stores, while bisindolylmaleimide I, an inhibitor of protein kinase C (PKC), enhanced the GR73632-induced influx of extracellular Ca(2+). RT-PCR assays revealed that canonical transient receptor potential (TRPC) 1, 2, 3, 4 and 6 mRNA were expressed in spinal astrocytes. Moreover, BTP2 (a general TRPC channel inhibitor) or Pyr3 (a TRPC3 inhibitor) markedly blocked the GR73632-induced sustained increase in [Ca(2+)](i). These findings suggest that the stimulation of the NK-1 receptor in spinal astrocytes induces Ca(2+) release from IP(3-)sensitive intracellular Ca(2+) stores, which is positively modulated by PKA, and subsequent Ca(2+) influx through TRPC3, which is negatively regulated by PKC.  相似文献   

13.
The signaling pathway by which insulin stimulates insulin secretion and increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in isolated mouse pancreatic beta-cells and clonal beta-cells was investigated. Application of insulin to single beta-cells resulted in increases in [Ca(2+)](i) that were of lower magnitude, slower onset, and longer lifetime than that observed with stimulation with tolbutamide. Furthermore, the increases in [Ca(2+)](i) originated from interior regions of the cell rather than from the plasma membrane as with depolarizing stimuli. The insulin-induced [Ca(2+)](i) changes and insulin secretion at single beta-cells were abolished by treatment with 100 nm wortmannin or 1 micrometer thapsigargin; however, they were unaffected by 10 micrometer U73122, 20 micrometer nifedipine, or removal of Ca(2+) from the medium. Insulin-stimulated insulin secretion was also abolished by treatment with 2 micrometer bisindolylmaleimide I, but [Ca(2+)](i) changes were unaffected. In an insulin receptor substrate-1 gene disrupted beta-cell tumor line, insulin did not evoke either [Ca(2+)](i) changes or insulin secretion. The data suggest that autocrine-activated increases in [Ca(2+)](i) are due to release of intracellular Ca(2+) stores, especially the endoplasmic reticulum, mediated by insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Autocrine activation of insulin secretion is mediated by the increase in [Ca(2+)](i) and activation of protein kinase C.  相似文献   

14.
Effects of extracellular calcium ([Ca(2+)](ext)) on parathyroid cells are mainly due to the activation of a plasma membrane calcium receptor (CaR) coupled with release of intracellular calcium. In addition, high [Ca(2+)](ext) activates the sphingomyelin pathway in bovine parathyroid cells, generating ceramides and sphingosine. This study explored the direct effects of synthetic ceramides on [Ca(2+)](i) in human parathyroid cells. Cells from five parathyroid adenomas removed from patients with primary hyperparathyroidism were dispersed and maintained in primary culture. Intracellular calcium concentration ([Ca(2+)](i)) [Ca(2+)](i) was monitored using standard quantitative fluorescence microscopy in Fura-2/AM-loaded cells. Laser scanning microscopy was used to monitor the intracellular distribution of a fluorescent ceramide analogue (BODIPY-C5). After addition of 10 microM C2-ceramide (N-acetyl-d-erythro-sphingosine), [Ca(2+)](i) increased rapidly (30-60 s) to a peak three times above basal levels in 70% of cells (37/55 cells in four experiments). This effect appeared to be due to release of Ca(2+) from intracellular stores rather than Ca(2+) entry from the extracellular medium. C2-responsive cells had a smaller [Ca(2+)](i) response to subsequent stimulation with the CaR agonist-neomycin (1 mM). These responses were specific to C2 since C6-ceramide (N-hexanoyl-d-erythro-sphingosine) did not affect basal [Ca(2+)](i) nor the responses to an increase in [Ca(2+)](ext) and to neomycin. C5-BODIPY generated intense perinuclear fluorescence, suggesting targeting of the ceramides to the Golgi apparatus. These data demonstrate that endogenous generation of ceramides has the potential to modulate changes in [Ca(2+)](i) and secretion in response to [Ca(2+)](ext) in human parathyroid cells.  相似文献   

15.
Hong SJ 《Cellular signalling》2002,14(10):811-817
The effect of endothelin-1 (ET-1) on the intracellular free Ca(2+) ([Ca(2+)](i)) mobility in cultured H9c2 myocardiac ventricular cells was studied after loading with fura-2-AM. In Ca(2+)-containing buffer, ET-1 induced [Ca(2+)](i) rise from 10(-7) to 10(-9) M. ET-1 induced [Ca(2+)](i), which was composed of a first small peak and a secondary persistent plateau. In Ca(2+)-free buffer, pretreatment with 10(-7) M ET-1 inhibited the thapsigargin and carbonylcyanide m-chlorophenylhydrazone (CCCP)-induced [Ca(2+)](i) increase. Meanwhile, pretreatment with thapsigargin and CCCP also inhibited ET-1-induced [Ca(2+)](i) rise. In Ca(2+)-containing buffer, the ET(A) receptor antagonist (BQ123) completely abolished the secondary rising peak and plateau. Conversely, the ET(B) receptor antagonist (BQ788) completely inhibited the first small peak and secondary peak plateau. Nifedipine and La(3+) also abolished the 10(-7) M ET-1-induced [Ca(2+)](i) in the first rising peak. The internal Ca(2+) release induced by ET-1 was inhibited by U73122 (phospholipase C inhibitor), propranolol (phospholipase D inhibitor) and aristolochic acid (phospholipase A2 inhibitor). After incubation of 10(-7) M ET-1 in Ca(2+)-free buffer, the addition of 5 mM CaCl(2) increased Ca(2+) influx, implying that release of Ca(2+) from internal stores further induces capacitative Ca(2+) entry. Taken together, these results suggest that both ET(A) and ET(B) receptors are involved in ET-1-induced [Ca(2+)](i) rise in H9c2 myocardiac ventricular cells. Whereas ET(B) receptor seems to mediate the initial Ca(2+) influx via L-type Ca(2+) channel, ET(A) receptor appears to be involved in the subsequent Ca(2+) release from endoplasmic reticulum and mitochondria Ca(2+) stores.  相似文献   

16.
An organotypic cell culture (OCC) model of the rat hypothalamic paraventricular nucleus (PVN) was established to monitor intracellular calcium levels ([Ca(2+)](i)) of magnocellular neurons in response to glutamate and nitric oxide (NO). The histoarchitectural organization of these cultures was characterized either by immunohistochemical labeling of vasopressin, neuronal nitric oxide synthase (nNOS) and the neuronal marker NeuN or by the enzyme histochemical NADPH-diaphorase staining. A distinct NeuN positive cell population in 14-days old OCC's was confirmed as being the PVN by its vasopressin- and nNOS-immunostained neurons as well as by its NADPH-diaphorase labeling. Life cell imaging was performed using the [Ca(2+)](i) sensor Fluo-4 to measure [Ca(2+)](i) transients in response to bath applications of glutamate, high potassium (60 mM), and ATP. The glutamate-induced [Ca(2+)](i) response was mimicked by AMPA but not NMDA in the PVN. NMDA, however, elicited a [Ca(2+)](i) transient in a different area of the OCC that corresponds to the suprachiasmatic nucleus indicating the potential effectiveness of the stimulus. The AMPA-receptor blocker NBQX abolished the glutamate-induced response in the PVN. An inhibition of endogenous NO production by the NOS inhibitor L-NAME decreased the amplitude of AMPA- and glutamate-induced [Ca(2+)](i) rises. Taken together, these data suggest that AMPA mediates the glutamate-induced [Ca(2+)](i) rises within the PVN, where endogenous NO is able to modulate such glutamate signaling in OCC.  相似文献   

17.
In freshly isolated rabbit pulmonary artery smooth muscle cells, endothelin (ET)-1 induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a return to the initial [Ca(2+)](i). This response was not abolished by the voltage-dependent Ca(2+) channel blocker nicardipine or removal of Ca(2+) from the bath solution but was inhibited by ryanodine and thapsigargin. This finding suggested that the increase in [Ca(2+)](i) induced by ET-1 was attributable to release of Ca(2+) from ryanodine- and inositol 1,4,5-trisphosphate-sensitive intracellular Ca(2+) stores. The transient increase in [Ca(2+)](i) induced by ET-1 was also inhibited by pretreatment with antagonists of ET type A and B (ET(A) and ET(B)) receptors (BQ-123 and BQ-788, respectively). Furthermore, the ET(B) receptor agonist IRL-1620 induced an increase in [Ca(2+)](i) that was followed by a sustained increase in [Ca(2+)](i); the sustained increase in [Ca(2+)](i) was blocked by nicardipine. Using the nystatin-perforated patch-clamp technique, we found that IRL-1620 caused an increase in Ca(2+) current that was inhibited by addition of ET-1. ET-1 did not inhibit Ca(2+) current when cells were pretreated with BQ-123. These results suggested that when both receptor types are activated, the opposing responses lead to abolition of the sustained [Ca(2+)](i) increases induced by ET(B) receptor activation. Western blot analysis confirmed expression of ET(A) and ET(B) receptors. Finally, U-73122 inhibited the ET-1-induced [Ca(2+)](i) increase, indicating that phospholipase C was involved in modulation of the ET-1-induced [Ca(2+)](i) increase in rabbit pulmonary artery smooth muscle cells.  相似文献   

18.
During acute exacerbations of inflammatory bowel diseases, oxidants are generated through the interactions of bacteria in the lumen, activated granulocytes, and cells of the colon mucosa. In this study we explored the ability of one such class of oxidants, represented by monochloramine (NH(2)Cl), to serve as agonists of Ca(2+) and Zn(2+) accumulation within the colonocyte. Individual colon crypts prepared from Sprague-Dawley rats were mounted in perfusion chambers after loading with fluorescent reporters fura 2-AM and fluozin 3-AM. These reporters were characterized, in situ, for responsiveness to Ca(2+) and Zn(2+) in the cytoplasm. Responses to different concentrations of NH(2)Cl (50, 100, and 200 microM) were monitored. Subsequent studies were designed to identify the sources and mechanisms of NH(2)Cl-induced increases in Ca(2+) and Zn(2+) in the cytoplasm. Exposure to NH(2)Cl led to dose-dependent increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) in the range of 200-400 nM above baseline levels. Further studies indicated that NH(2)Cl-induced accumulation of Ca(2+) in the cytoplasm is the result of release from intracellular stores and basolateral entry of extracellular Ca(2+) through store-operated channels. In addition, exposure to NH(2)Cl resulted in dose-dependent and sustained increases in intracellular Zn(2+) concentration ([Zn(2+)](i)) in the nanomolar range. These alterations were neutralized by dithiothreitol, which shields intracellular thiol groups from oxidation. We conclude that Ca(2+)- and Zn(2+)-handling proteins are susceptible to oxidation by chloramines, leading to sustained, but not necessarily toxic, increases in [Ca(2+)](i) and [Zn(2+)](i). Under certain conditions, NH(2)Cl may act not as a toxin but as an agent that activates intracellular signaling pathways.  相似文献   

19.
Prolactin (PRL) cells from the euryhaline tilapia, Oreochromis mossambicus, behave like osmoreceptors by responding directly to reductions in medium osmolality with increased secretion of the osmoregulatory hormone PRL. Extracellular Ca(2+) is essential for the transduction of a hyposmotic stimulus into PRL release. In the current study, the presence and possible role of intracellular Ca(2+) stores during hyposmotic stimulation was investigated using pharmacological approaches. Changes in intracellular Ca(2+) concentration were measured with fura-2 in isolated PRL cells. Intracellular Ca(2+) stores were depleted in dispersed PRL cells with thapsigargin (1 microM) or cyclopiazonic acid (CPA, 10 microM). Pre-incubation with thapsigargin prevented the rise in [Ca(2+)](i) induced by lysophosphatidic acid (LPA, 1 microM), an activator of the IP(3) signalling cascade, but did not prevent the hyposmotically-induced rise in [Ca(2+)](i) in medium with normal [Ca(2+)] (2mM). Pre-treatment with CPA produced similar results. Prolactin release from dispersed cells followed a pattern that paralleled observed changes in [Ca(2+)](i). CPA inhibited LPA-induced prolactin release but not hyposmotically-induced release. Xestospongin C (1microM), an inhibitor of IP(3) receptors, had no effect on hyposmotically-induced PRL release. Pre-exposure to caffeine (10mM) or ryanodine (1microM) did not prevent a hyposmotically-induced rise in [Ca(2+)](i). Taken together these results indicate the presence of IP(3) and ryanodine-sensitive Ca(2+) stores in tilapia PRL cells. However, the rapid rise in intracellular [Ca(2+)] needed for acute PRL release in response to hyposmotic medium can occur independently of these intracellular Ca(2+) stores.  相似文献   

20.
Pancreatic acini secrete digestive enzymes in response to a variety of secretagogues including CCK and agonists acting via proteinase-activated receptor-2 (PAR2). We employed the CCK analog caerulein and the PAR2-activating peptide SLIGRL-NH(2) to compare and contrast Ca(2+) changes and amylase secretion triggered by CCK receptor and PAR2 stimulation. We found that secretion stimulated by both agonists is dependent on a rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and that this rise in [Ca(2+)](i) reflects both the release of Ca(2+) from intracellular stores and accelerated Ca(2+) influx. Both agonists, at low concentrations, elicit oscillatory [Ca(2+)](i) changes, and both trigger a peak plateau [Ca(2+)](i) change at high concentrations. Although the two agonists elicit similar rates of amylase secretion, the rise in [Ca(2+)](i) elicited by caerulein is greater than that elicited by SLIGRL-NH(2). In Ca(2+)-free medium, the rise in [Ca(2+)](i) elicited by SLIGRL-NH(2) is prevented by the prior addition of a supramaximally stimulating concentration of caerulein, but the reverse is not true; the rise elicited by caerulein is neither prevented nor reduced by prior addition of SLIGRL-NH(2). Both the oscillatory and the peak plateau [Ca(2+)](i) changes that follow PAR2 stimulation are prevented by the phospholipase C (PLC) inhibitor U73122, but U73122 prevents only the oscillatory [Ca(2+)](i) changes triggered by caerulein. We conclude that 1) both PAR2 and CCK stimulation trigger amylase secretion that is dependent on a rise in [Ca(2+)](i) and that [Ca(2+)](i) rise reflects release of calcium from intracellular stores as well as accelerated influx of extracellular calcium; 2) PLC mediates both the oscillatory and the peak plateau rise in [Ca(2+)](i) elicited by PAR2 but only the oscillatory rise in [Ca(2+)](i) elicited by CCK stimulation; and 3) the rate of amylase secretion elicited by agonists acting via different types of receptors may not correlate with the magnitude of the [Ca(2+)](i) rise triggered by those different types of secretagogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号