首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADP reduction was shown to occur in a crude cytosolic extract from the cotyledonary material of hazel seed prior to the addition of erogenous dehydrogenase substrate. This activity interfered with the assay of glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase activities. The inherent NADP reduction was removed by ammonium sulphate fractionation. Subsequent de-salting of the resulting partially-purified fraction permitted assay of G6PDH and 6PGDH. Both enzymes were shown to be NADP specific. Typical Michaelis-Menten kinetics were shown for each enzyme, towards NADP and their respective substrate.  相似文献   

2.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency was identified in two children who were studied because of hemolytic episodes. The electrophoretic and kinetic properties of the mutant enzymes allowed us to conclude that both of them were new variants. They were named G6PD Guantánamo and G6PD Caujerí.  相似文献   

3.
Two anodic isoenzymes of glucose-6-phosphate dehydrogenase (G6PDH) were isolated from tobacco suspension culture WR-132, utilizing fractional ammonium sulfate precipitation and DEAE-cellulose chromatography. The pH optimum was 9.0 for isoenzyme G6PDH I and 8.0–8.3 for G6PDH IV. Isoenzyme G6PDH I exhibited Michaelis-Menten kinetics for both substrates, G6P and NADP+, with Km's of 0.22 mM and 0.06 mM, respectively. G6PDH IV exhibited Michaelis-Menten kinetics for G6P with a Km of 0.31 mM. The NADP+ double reciprocal plot showed an abrupt transition between two linear sections. This transition corresponds to an abrupt increase in the apparent Km and Vmax values with increasing NADP+, denoting negative cooperativity. The two Km's for high and low NADP+ concentrations were 0.06 mM and 0.015 mM, respectively. MWs of the isoenzymes as determined by SDS disc gel electrophoresis were 85 000–91 000 for G6PDH I and 54 000–59 000 for G6PDH IV. Gel filtration chromatography on Sephadex G-150 showed MW's of 91 000 for G6PDH I and 115 000 for G6PDH IV. A probable dimeric structure for IV is suggested, with two NADP+ binding sites.  相似文献   

4.
Effector studies with two isoenzymes (I and IV) of glucose-6-phosphate dehydrogenase (G6PDH) from tobacco suspension culture WR-132 revealed that chlorogenic acid, at 0.4 mM, inhibited both isoenzymes almost 100%, with the inhibition decreasing as the concentration of the acid was reduced. At 0.3 and 0.4 mM, the coumarin glucosides scopolin and esculin were inhibitory, whereas their aglucones scopoletin and esculetin were less inhibitory, and at low concentrations of glucose-6-phosphate (G6P), the latter two were actually stimulatory for G6PDH I. Of the possible effectors studied, only scopoletin and esculetin exhibited a significant activation of G6PDH I under these conditions. However, with G6PDH IV these two effectors do not show the same marked activation at the low G6P concentrations. The phenolic acids, caffeic and ferulic, were less inhibitory than the coumarins tested. The activation of G6PDH I by scopoletin, a compound which accumulates in tobacco under certain stress conditions, gives a possible clue as to the resulting enhanced activity of the hexose monophosphate pathway that has been reported for some plants subjected to stress conditions.  相似文献   

5.
More than a hundred naturally occurring mutations of human glucose-6-phosphate dehydrogenase (G6PD) have been identified at the amino acid level. The abundance of distinct mutation sites and their clinical manifestations make this enzyme ideal for structure-function analysis studies. We present here a sequence and structure combined analysis by which the severity of clinical symptoms resulting from point mutations of this enzyme is correlated with quantified degrees of amino acid conservation within 23 G6PD sequences from different organisms. Our analysis verifies, on a quantitative basis, a widely held notion that clinically severer mutations of G6PD usually occur at conserved amino acids. However, marked exceptions to this general trend exist which are most notably revealed by a number of mutations associated with chronic nonspherocytic hemolytic anemia (class I variants). When mapped onto a homology-derived structural model of human G6PD, these class I mutational sites of low amino acid conservation appear to localize in two spatially distinct clusters, both of which are populated with mutations consisting mainly of clinically severer variants (i.e. class I and class II). These results of computer-assisted analyses contribute to a further understanding of the structure-function relationships of human G6PD deficiency.  相似文献   

6.
The presence of the initial enzymes of the pentose phosphate pathway, namely glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase, has been demonstrated in dormant seed of wild oat. Before a partial characterization of these enzymes was made, an inherent NADP-reducing activity and an enzyme deactivating component, both present in the crude extract, were removed by ammonium sulphate precipitation and subsequent desalting. Both enzymes were then shown to be NADP-specific. Typical Michaelis-Menten kinetics were shown by each enzyme towards NADP and their respective substrates. Soluble cytoplasmic dehydrogenase enzymes were present in both embryo and endosperm extracts.  相似文献   

7.
Inhibition by aurinetricarboxylic acid (ATA) of glucose-6-phosphate (G6P) dehydrogenase was "competitive" with respect to G6P and "mixed type" with respect to NADP+. Inhibited enzyme bound two molecules of ATA. Kinetic constants, Km, Ki at varying pH suggested possible binding of the inhibitor by the sulfhydryl of the enzyme; of the several enzymes tested only milk xanthine oxidase and G6P dehydrogenase from bovine adrenal was inhibited by ATA.  相似文献   

8.
The glucose-6-phosphate dehydrogenase (EC 1.1.1.49) gene (zwf) of the cyanobacterium Synechococcus PCC 7942 was cloned on a 2.8 kb Hind III fragment. Sequence analysis revealed an ORF of 1572 nucleotides encoding a polypeptide of 524 amino acids which exhibited 41% identity with the glucose-6-phosphate dehydrogenase of Escherichia coli.  相似文献   

9.
We describe a gold nanoparticle-based technique for the detection of single-base mutations in the glucose-6-phosphate dehydrogenase (G6PD) gene, a condition that can lead to neonatal jaundice and hemolytic anemia. The aim of this technique is to clearly distinguish different mutations frequently described within the Asian population from their wild-type counterparts and across different mutant variants. Gold nanoparticles of different sizes were synthesized, and each was conjugated with a single-strand DNA (ssDNA) sequence specific for a particular mutation in the G6PD gene. It was found that only mutant targets presented a characteristic band on the agarose gel, indicating the successful formation of dimeric nanostructures. No such dimer bands were observed for the wild-type targets. The difference in the relative dimer band levels allowed different mutant variants to be distinguished from one another. The technique was further validated using G6PD-deficient patient samples. This simple mutation detection method with direct result readout is amenable for rapid and mass screening of samples.  相似文献   

10.
Isulin is capable of regulating cellular and metabolic processes as well as gene expression. In recent years, enthusiasm has surfaced for using insulin mimetics to study the mechanism of action of insulin. Vanadata and selenate are two compounds that have been found to mimic the action of insulin on control to blood glucose levels in vivo. Vanadata has also been shown to regulate the expression of several enzymes both in vivo, however, studies concerning selenate's ability to regulate expression have not been reported. In his study we show that administration of vanadate or selenate to streptozotocin-induced diabetic rats not only normalizes blood glucose levels similarly to insulin but also positively affects the expression of two key metabolic enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and fatty acid synthase (FAS). Both G6PDH and FAS activity are significantly decreased in diabetic animals compared to non-diabetic control. Treatment of the diabetic animals with either insulin, vanadate or selenate restored both activities to about 80–90% of control. All treatment conditions exhibited activities significantly higher than those determined for the diabetic group but did not differ significantly from each other. Increases in GPDH or FAS activity are due to increases in mRNA level. Increase in both G6PDH and FAS mRNA was comparable to the observed increase in activity suggesting that regulation of expression by the mimetics occurs pretranslationally.  相似文献   

11.
A new variant of the red cell enzyme glucose-6-phosphate dehydrogenase has been detected in a South African male of Indian descent and in several of his relatives. The enzyme variant is characterized by slow electrophoretic mobility, low Michaelis constants for the substrates glucose-6-phosphate and NADP, and increased utilization of the substrate analogues 2-deoxyglucose-6-phosphate and deamino-NADP relative to the normal (B+) enzyme. There is no evidence that the enzyme variant, for which the name G6PD Porbandar is suggested, is associated with any hematological abnormality.The Atomic Energy Board and the South African Medical Research Council provided support for part of this work.  相似文献   

12.
The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency and its gene mutations were studied in the Achang population from Lianghe County in Southwestern China. We found that 7.31% (19 of 260) males and 4.35% (10 of 230) females had G6PD deficiency. The molecular analysis of G6PD gene exons 2–13 was performed by a PCR-DHPLC-Sequencing or PCR-Sequencing. Sixteen independent subjects with G6PD Mahidol (487G>A) and the new polymorphism IVS5-612 (G>C), which combined into a novel haplotype, were identified accounting for 84.2% (16/19). And 100% Achang G6PD Mahidol were linked to the IVS5-612 C. The percentage of G6PD Mahidol in the Achang group is close to that in the Myanmar population (91.3% 73/80), which implies that there are some gene flows between Achang and Myanmar populations. Interestingly, G6PD Canton (1376G>T) and G6PD Kaiping (1388G>A), which were the most common G6PD variants from other ethnic groups in China, were not found in this Achang group, suggesting that there are different G6PD mutation profiles in the Achang group and other ethnic groups in China. Our findings appear to be the first documented report on the G6PD genetics of the AChang people, which will provide important clues to the Achang ethnic group origin and will help prevention and treatment of malaria in this area.  相似文献   

13.
The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency and its gene mutations were studied in the Achang population from Lianghe County in Southwestern China. We found that 7.31% (19 of 260) males and 4.35% (10 of 230) females had G6PD deficiency. The molecular analysis of G6PD gene exons 2―13 was performed by a PCR-DHPLC-Sequencing or PCR-Sequencing. Sixteen inde-pendent subjects with G6PD Mahidol (487G>A) and the new polymorphism IVS5-612 (G>C), which combined into a novel haplotype, were identified accounting for 84.2% (16/19). And 100% Achang G6PD Mahidol were linked to the IVS5-612 C. The percentage of G6PD Mahidol in the Achang group is close to that in the Myanmar population (91.3% 73/80), which implies that there are some gene flows between Achang and Myanmar populations. Interestingly, G6PD Canton (1376G>T) and G6PD Kaiping (1388G>A), which were the most common G6PD variants from other ethnic groups in China, were not found in this Achang group, suggesting that there are different G6PD mutation profiles in the Achang group and other ethnic groups in China. Our findings appear to be the first documented report on the G6PD genetics of the AChang people, which will provide important clues to the Achang ethnic group origin and will help prevention and treatment of malaria in this area.  相似文献   

14.
15.
Thiol status and growth in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes. Experimental Parasitology 57, 239-247. The relationship of the thiol status of the human erythrocyte to the in vitro growth of Plasmodium falciparum in normal and in glucose-6-phosphate dehydrogenase (G6PD)-deficient red cells was investigated. Pretreatment with the thiol-oxidizing agent diamide led to inhibition of growth of P. falciparum in G6PD-deficient cells, but did not affect parasite growth in normal cells. Diamide-treated normal erythrocytes quickly regenerated intracellular glutathione (GSH) and regained normal membrane thiol status, whereas G6PD-deficient cells did not. Parasite invasion and intracellular development were affected under conditions in which intracellular GSH was oxidized to glutathione disulfide and membrane intrachain and interchain disulfides were produced. An altered thiol status in the G6PD-deficient erythrocytes could underlie the selective advantage of G6PD deficiency in the presence of malaria.  相似文献   

16.
Glucose-6-phosphate dehydrogenase undergoes in vitro a decrease of its isoelectric pH in the presence of its coenzyme NADP+, and of either a NAD(P) glycohydrolase or an excess of its substrate, glucose-6-phosphate at acidic pHs.The mechanism of in vitro production of hyperanodic bands of glucose-6-phosphate dehydrogenase has been studied. It consists in a covalent fixation of phosphoadenosine diphosphoribose or of a degradation product of NADPH. In the case of P-ADP-Rib, the reaction is stoichiometric, one molecule of ligand being bound to one subunit of enzyme. The bond between enzyme and P-ADP-Rib was characterized as a Schiff's base.  相似文献   

17.
The ratio of activities of 6-phosphogluconate dehydrogenase/glucose-6-phosphate dehydrogenase measured in liver extracts of rats in lipogenic nutritional conditions is only 0.2, suggesting an apparent physiological unbalance between the two dehydrogenases of the hexosemonophosphate shunt. This potential unbalance is enhanced by the fact that TPNH is a more powerful competitive inhibitor of 6-phosphogluconate dehydrogenase than of glucose-6-phosphate dehydrogenase. Accordingly, a strong activation of 6-phosphogluconate dehydrogenase would be required for efficient functioning of this pathway, unless there is an alternative outlet for 6-phosphogluconate so far unrecognized in animal tissues.  相似文献   

18.
Glucose-6-phosphate dehydrogenase was purified from rabbit brain cortex using a single immunoaffinity chromatographic step and was contaminated only by a 50 kDa protein. The proteins, separated by SDS-PAGE, were sequenced: the glucose-6-phosphate dehydrogenase was blocked at the N-terminal, the co-eluted protein was similar to -tubulin. Our technique can be applied to purification and sequencing of the enzyme from brain areas or to measure its turnover rate in cultured cells.  相似文献   

19.
In this study, the in vitro effects of some sulfonamide derivatives, which are carbonic anhydrase inhibitors, on the enzymes activities of glucose-6-phosphate dehydrogenase, 6-phospho gluconate dehydrogenase and glutathione reductase were investigated. For this purpose, these three enzymes were purified from human erythrocytes. Purification procedure composed of four steps; preparation of the hemolysate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography, and gel filtration chromatography on Sephadex G-200. 5-(3α-Hydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α,12α-Dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α,7α,12α-Trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3), 5-(3α,Acetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (4), 5-(3α,7α,12α-Triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (5), 5-(3,7,12-Trioxo-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (6), acetazolamide, and dorzolamide were tested in this experiment. Compounds 3, 5, and dorzolamide showed inhibitory effects on the activity of 6-phosphogluconate dehydrogenase, and I50 values and Ki constants were calculated as 0.0601 mM, 0.00253 mM, and 1.41 mM and 0.0878 ± 0.0274 mM, 0.0042 ± 0.0009 mM, and 3.1446 ± 0.2081 mM, respectively. Glutathione reductase was also inhibited by 1 and 2. I50 values and Ki constants were 0.0471 mM and 0.0723 ± 0.0388 mM for 1 and 0.0045 mM and 0.0061 ± 0.0014 mM, for 2. If these sulfonamide derivatives are proposed as drugs, some of which are being used in glaucoma treatment such as acetazolamide and dorzolamide, these results should be taken into consideration concerning via these enzymes.  相似文献   

20.
Inhibitory effects of some drugs on glucose 6-phosphate dehydrogenase from the erythrocytes of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) were investigated. The enzyme was purified 2488-fold in a yield of 76.8% using ammonium sulfate precipitation and 2′,5′-ADP Sepharose 4B affinity gel at 4°C. The drugs pental sodium, MgSO4, vancomycin, metamizol, marcaine, and prilocaine all exhibited inhibitory effects on the enzyme. While MgSO4 (Ki = 12.119 mM), vancomycin (Ki = 1.466 mM) and metamizol (Ki = 0.392 mM) showed competitive inhibition, pental sodium (Ki = 0.748 mM) and marcaine (Ki = 0.0446 mM) displayed noncompetitive inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号