首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Abstract

Several soil isolates from 1 g of soil sample were isolated and screened for the production of L-asparaginase. Primary screening was performed using rapid plate assay; dye indicator studies were conducted, and phenol red with 0.005% concentration was found to be optimum. The secondary screening was carried out using the Nesslerization method. The bacteria screened for L-asparaginase production with no glutaminase activity was identified as Bacillus subtilis. Crude L-asparaginase enzyme was partially purified 1.57 folds of purity and 110 U/mg of specific activity. The glutaminase-free L-asparaginase activity was also confirmed using LC-MS analysis. The presence of mass peaks at 147.0 in the reaction mixture suggested an absence of glutaminase activity. An optimized medium obtained comprised of Dextrose 1.5 g/L, K2HPO4 1.2 g/L, L-asparagine 15 g/L, and Tryptone 5 g/L. The highest L-asparaginase activity was observed at 6.0 pH and 30 °C. Kinetic parameters associated with biomass and L-asparaginase production were also studied. The computed values were µm 0.104 h?1, Xm 6g/L P0 1.7U/mL Pm 8.2 U/mL YX/S 4 g-cell/g-glucose µPm 0.35 h?1 qp 5.46 U/g/h YP/x 13.6667 U/g-cell. The novel bacterial isolates showed promise as a potential glutaminase-free L-asparaginase producer, which can prove to be of industrial applications.  相似文献   

2.
Among cancers, acute lymphoblastic leukemia (ALL) occurs in the children <15 years of age. L-asparaginase is an important therapeutic enzyme used for treating ALL. Owing to its therapeutic use and demand, microorganisms have been in use for many years to produce L-asparaginase on an industrial scale. Gram-negative bacteria (Serratia, Erwinia and Escherichia coli) species were used in L-asparaginase. However, earlier studies have documented that the long-term use of enzymes produced from these commercial strains induces hypersensitivity in patients. Therefore, there is a need to discover novel microbial strains producing L-asparaginase with anti-cancer properties, which can be employed for the commercial production of the enzyme. In this study, three strains of Pseudomonas aeruginosa (accession numbers LC425424 (P31), LC425425 (P32), and LC425426 (P34)) isolated from garden soil were screened for the invention of L-asparaginase. Fermented production media was dialyzed to attain the purified enzyme, thus showed a dose-depended cytotoxic effect on HeLa cells, as determined by MTT assay. The IC50s of the different isolates were 86.73, 57.65, and 40.34 µg/mL. These results indicate that pseudomonal L-asparaginase may be used for cancer treatment.  相似文献   

3.
L-asparaginase EC 3.5.1.1 was purified to homogeneity from Thermus thermophilus. The apparent molecular mass of L-asparaginase by SDS-PAGE was found to be 33 kDa, whereas by its mobility on Sephacryl S-300 superfine column was around 200 kDa, indicating that the enzyme at the native stage acts as hexamer. The purified enzyme showed a single band on acrylamide gel electrophoresis with pI = 6.0. The optimum pH was 9.2 and the Km for L-asparagine was 2.8 mM. It is a thermostable enzyme and it follows linear kinetics even at 77°C. Chemical modification experiments implied the existence of histidyl, arginyl and a carboxylic residues located at or near active site while serine and mainly cysteine seems to be necessary for active form.  相似文献   

4.
Marine actinomycetes were isolated from sediment samples collected from Pitchavaram mangrove ecosystem situated along the southeast coast of India. Maximum actinomycete population was noted in rhizosphere region. About 38% of the isolates produced L-asparaginase. One potential strain KUA106 produced higher level of enzyme using tryptone glucose yeast extract medium. Based on the studied phenotypic characteristics, strain KUA106 was identified as Streptomyces parvulus KUA106. The optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Streptomycetes parvulus. Four medium factors were screened from eleven medium factors by Plackett-Burman design experiments and subsequent optimization process to find out the optimum values of the selected parameters using central composite design was performed. Asparagine, tryptone, d) extrose and NaCl components were found to be the best medium for the L-asparaginase production. The combined optimization method described here is the effective method for screening medium factors as well as determining their optimum level for the production of L-asparaginase by Streptomycetes parvulus KUAP106.  相似文献   

5.
Green chillies(Capsicum annum L.) and tamarind (Tamarindus indica) contain appreciable amount of L-asparaginase. The enzyme was purified 400-fold from green chillies, by successive precipitations with ammonium sulphate and sodium sulphate, Sephadex-gel filtration and affinity chromatography and the purified enzyme was homogenous on gel electrophoresis. The enzyme exists in two forms, only one having antitumour activity. The purified enzyme has a molecular weight of 120,000 ±500. The N-terminal and the C-terminal amino acids are alanine and phenylalanine, respectively. The enzyme has a sharp optimum pH of 8.5 and a temperature optimum of 37‡C. It is stable upto 40‡C. The energy of activation is 3 kilo calories. The Km value for the enzyme is 3.3. mm. The enzyme has little action on D-asparagine, which is a strong inhibitor. The enzyme has inseparable glutaminase ctivity and is thus an asparaginase—glutaminase. In addition, it possesses urease activity.  相似文献   

6.
Homogeneols L-asparaginase with anti-lymphoma activity was prepared from Vibrio succinogenes, an anaerobic bacterium from the bovine rumen. An overall yield of pure L-asparaginase of 40 to 45% and a specific activity of 200 +/- 2 IU per mg of protein was obtained. The pure enzyme can be stored at -20 degrees for at least 3 months with no loss of activity. The isoelectric point of the L-asparaginase is 8.74. No carbohydrate, phosphorus, tryptophan, disulfide, or sulfhydryl groups were detected. The enzyme has a molecular weight of 146,000 and a subunit weight of approximately 37,000. The Km of the enzyme for L-asparagine is 4.78 X 10(-5) M and the pH optimum of the L-asparaginase reaction is 7.3. D-Asparagine was hydrolyzed at 6.5% of the rate found with the L isomer. L-Glutamine and a variety of other amides were not hydrolyzed at significant rates; the activity of the enzyme for L-glutamine was 130- to 600-fold less than that of other therapeutically effective L-asparaginases of bacterial origin. The L-asparaginase from V. succinogenes is immunologically distinct from the L-asparaginase (EC-2) of Escherichia coli.  相似文献   

7.
The ph optimum of purified staphylococcal L-asparaginase (EC 3.5.1.1) was found to be between 8.6 and 8.8. The temperature optimum was 30 degrees-32 degrees C and the highest reaction rate occurred at 30 degrees C. The KM of the enzyme calculated from Lineweaver-Burk plot was 3.71 x 10(-2) M. Besides L-asparaginase, the substrate specificity of enzyme was restricted to N-alpha-acetyl-L-asparagine. D-asparagine, L-aspartic acid and D-glutamic acid were competitive inhibitors. Hg2+ and Cu2+ cations strongly inhibited the enzyme while Na+ and K+ cations strongly stimulated activity. Two SH-groups could be detected after enzyme denaturation with guanidine.  相似文献   

8.
Glutaminase free L-asparaginase is known to be an excellent anticancer agent. In the present study, the combined effect of pH and temperature on the performance of purified novel L-asparaginase from Pectobacterium carotovorum MTCC 1428 was studied under assay conditions using response surface methodology (RSM). Deactivation studies and thermodynamic parameters of this therapeutically important enzyme were also investigated. The optimum pH and temperature of the purified L-asparaginase were found to be 8.49 and 39.3 degrees C, respectively. The minimum deactivation rate constant (k(d)) and maximum half life (t1/2) were found to be 0.041 min(-1) and 16.9 h, respectively at pH of 8.6 and 40 degreesC. Thermodynamic parameters (deltaG, deltaH, deltaS, and activation energies) were also evaluated for purified L-asparaginase. The probable mechanism of deactivation of purified L-asparaginase was explained to an extent on the basis of deactivation studies and thermodynamic parameters.  相似文献   

9.
Nitrogen represents a critical nutrient in raised bogs. In Sphagna , dominating this habitat, the prevalent storage amino acid asparagine is catabolized predominantly by the enzyme L-asparaginase (EC 3.5.1.1). L-asparaginase activity has been detected in each of 10 Sphagnum species investigated. In Sphagnum fallax Klinggr. (Klinggr. clone 1) cultivated under axenie conditions in continuous feed bioreactors, the enzyme displayed a light dependent increase in activity. We separated two isoforms, designated L-asparaginase 1 and 2, characterized by their different elution patterns from an anion-exchange column. In stem segments only L-asparaginase 2 could be detected, whereas in capitulae L-asparaginase 1 represented the dominating isoform. Purified chloroplasts displayed no L-asparaginase activity. Almost the entire activity was located in the cytosohc fraction. L-asparaginase 1 and 2 have been purified 82-fold and 188-fold, respectively, by ion-exchange, size-exclusion and hydrophobic interaction chrornatography. Identical pH optima (8.2) and molecular weights (126 000) were determined. The Km values for asparagine (7.4 m M for L-asparaginase 1 and 6.2 m M for L-asparaginase 2) were in the range of those described for higher plants. On the other hand Sphagnum L-asparaginase is comprised of four subunits as are the L-asparaginases of microorganisms. So, the characteristics of the bryophyte enzyme appear to be intermediate between those from higher plants and those from microorganisms.  相似文献   

10.
L-Asparaginase is an enzyme used in the treatment of acute lymphoblastic leukemia and other related malignancies. Its further use includes reduction of asparagine concentration in food products, which may lead to formation of acrylamide. Currently bacterial asparaginase is produced at industrial scale, but the enzyme isolated from bacterial origin is often associated with adverse reactions. These side effects require development of asparaginase from alternative sources. In the present study, Penicillium digitatum was explored for the production of extracellular L-asparaginase using modified Czapek–Dox media. The enzyme was purified about 60.95-fold and then kinetic study showed that the Km value of the enzyme was 1 × 10?5 M. The optimum pH and temperature for the enzyme were 7.0 and 30°C, respectively. The optimum incubation period for L-asparaginase was 15 min. This work concludes that this enzyme can be a suitable candidate due to its strong kinetic properties, and further research can usher into development of asparaginase formulation from fungal origin with less adverse effects.  相似文献   

11.
产碱性磷酸酶乳杆菌的筛选鉴定、酶的纯化及特性   总被引:1,自引:1,他引:0  
【背景】碱性磷酸酶(alkaline phosphatase,ALP)是生物体内参与磷酸代谢的调控酶,不同物种的ALP性质与其生理功能有关,提纯后的ALP常用作工具酶,广泛应用于基因工程中,但目前关于乳酸菌中ALP的相关研究甚少。【目的】筛选出一株产ALP且具有潜在益生作用的乳杆菌,对该酶进行分离纯化,并对其性质进行探究,为今后益生菌的开发利用和ALP的工业化生产提供新的微生物资源。【方法】采集蒙古国4个地区的酸马奶样品,通过显色反应初筛和酶活检测复筛对产酶菌株进行筛选,经形态学观察、生理生化鉴定及16S rRNA基因序列同源性比较分析进行菌种鉴定。采用超声破碎法提取ALP,经硫酸铵沉淀、DEAE-52离子交换层析、Sephadex G-200凝胶过滤层析纯化该酶,SDS-PAGE电泳法检测其纯度。【结果】从78株乳酸菌中分离筛选出一株产ALP酶活性最高的乳杆菌(编号为Z23),16S rRNA基因序列长度为1 473 bp,鉴定结果表明为鼠李糖乳杆菌。纯化后的酶比活力为180.27 U/mg,纯化倍数为48.37,酶活回收率为17.05%,该酶亚基相对分子质量为46.7 kD。菌株所产ALP的最适温度为37℃,4℃时酶活最为稳定;最适pH为9.5,在pH 9.0-10.0之间,酶活稳定性可达90%以上;Mg2+和K+对ALP有明显激活作用,Ba2+和Cu2+在低浓度时对ALP有激活作用,高浓度时有抑制作用,Ca~(2+)、Zn~(2+)和EDTA对ALP有强烈的抑制作用。以不同浓度的p-NPP为底物,测得酶的Km值为3.42 mmol/L,Vmax值为1.24 mmol/(L·min)。【结论】本研究对蒙古国地区酸马奶中的益生菌资源有了更为明确的认知,为今后碱性磷酸酶产生菌的筛选和酶的应用开辟了新途径。  相似文献   

12.
Attempts were made to optimize the cultural conditions for the production of L-asparaginase by Streptomyces albidoflavus under submerged fermentations. Enhanced level of L-asparaginase was found in culture medium supplemented with maltose as carbon source. Yeast extract (2%) was served as good nitrogen source for the production of L-asparaginase. The optimum pH for enzyme production was 7.5 and temperature was 35°C. The release of L-asparaginase from the cells of S. albidoflavus was high when strain was treated with cell disrupting agents like EDTA and lysozyme. The enzyme produced by the strain was purifi ed by ammonium sulfate, Sephadex G-100 and CM-Sephadex C-50 gel fi ltration and the molecular weight was apparently determined as 112 kDa.  相似文献   

13.
从丝状真菌中筛选到一株产α-半乳糖苷酶的菌株F63,对该菌株进行了形态观察和18SrDNA序列分析,该菌株属于青霉属。采用硫酸铵沉淀、阴离子交换层析和分子筛层析等方法分离纯化了该菌株的一种α-半乳糖苷酶。经过聚丙烯酰胺凝胶电泳,此酶蛋白的分子量约为82kDa。该α-半乳糖苷酶反应的最适pH为5.0,最适温度为45℃。此α-半乳糖苷酶的热稳定性在40℃以下,pH稳定性为pH5.0-6.0。与已报道的α-半乳糖苷酶的活性都受到Ag 的强烈抑制不同的是,该α-半乳糖苷酶受Ag 的抑制作用不显著。以pNPG为底物的Km值为1.4mmol/L和Vmax=1.556mmol/L.min-1.mg-1。该酶可以有效降解蜜二糖、棉子糖和水苏糖,但不能降解末端含α-半乳糖苷键的多糖。通过利用质谱技术对纯化的α-半乳糖苷酶进行鉴定以及内肽的N端测序证明该蛋白为一种新的α-半乳糖苷酶。  相似文献   

14.
Aeromonas sp. from Lamellidens marginalis produced L-asparaginase when grown at 37 degrees C. The optimum enzyme activity was at pH 9 when temperature was 45 degrees C. Half-life of partially purified enzyme at 50 degrees C and 55 degrees C was 35 and 20 min, respectively. Activation and deactivation energies of partially purified enzyme were 17.48 and 24.86 kcal mol-1 respectively. The enzyme exhibited a Km (L-asparagine) value of 4.9 x 10(-6) mol l-1 and a Vmax of 9.803 IU ml-1. Three metal ions inhibited the enzyme activity at 10-20 mumol l-1 concentrations. Catalytic activity was also inhibited by EDTA, iodoacetic acid, parachloromercuribenzoic acid and phenylmethylsulphonyl fluoride at 0.1 mumol l-1.  相似文献   

15.
B.R. MOHAPATRA, R.K. SANI AND U.C. BANERJEE. 1995. The bacterial flora associated with an intertidal marine alga ( Sargassum sp.) were screened for the presence of extracellular L-asparaginase; one out of five Bacillus strains was found positive. The maximum L-asparaginase activity was found at 37°C and pH 8.0. The optimum NaCl concentration for enzyme activity was found to be 2% (w/v). The enzyme activity was not affected by the addition of different metal ions (Ca2+, Co2+, Fe2+, Mg2+and Ni2+) at 10 mmol 1-1, but was strongly inhibited by EDTA.  相似文献   

16.
Glutaminase free L-asparaginase is known to be an excellent anticancer agent. In the present study, the combined effect of pH and temperature on the performance of purified novel L-asparaginase from Pectobacterium carotovorum MTCC 1428 was studied under assay conditions using response surface methodology (RSM). Deactivation studies and thermodynamic parameters of this therapeutically important enzyme were also investigated. The optimum pH and temperature of the purified L-asparaginase were found to be 8.49 and 39.3°C, respectively. The minimum deactivation rate constant (k d ) and maximum half life (t 1/2) were found to be 0.041 min−1 and 16.9 h, respectively at pH of 8.6 and 40°C. Thermodynamic parameters (ΔG, ΔH, ΔS, and activation energies) were also evaluated for purified L-asparaginase. The probable mechanism of deactivation of purified L-asparaginase was explained to an extent on the basis of deactivation studies and thermodynamic parameters.  相似文献   

17.
Endophytes are described as microorganisms that colonize the internal tissues of healthy plants without causing any disease. Endophytes isolated from medicinal plants have been attracting considerable attention due to their high biodiversity and their predicted potential to produce a plethora of novel compounds. In this study, an attempt was made to isolate endophytes from rhizomes of five medicinal plants of Zingiberaceae family, and to screen the endophytes for L-asparaginase activity. In total, 50 endophytes (14 bacteria, 22 actinomycetes, and 14 fungi) were isolated from Alpinia galanga, Curcuma amada, Curcuma longa, Hedychium coronarium, and Zingiber officinale; of these, 31 endophytes evidenced positive for L-asparaginase production. All the L-asparaginase-positive isolates showed L-asparaginase activity in the range of 54.17–155.93 U/mL in unoptimized medium. An endophytic fungus isolated from Curcuma amada, identified as Talaromyces pinophilus, was used for further experiments involving studies on the effect of certain nutritional and nonnutritional factors on L-asparaginase production in submerged fermentation. Talaromyces pinophilus initially gave an enzyme activity of 108.95 U/mL, but gradually reduced to 80 U/mL due to strain degeneration. Perhaps this is the first report ever on the production of L-asparaginase from endophytes isolated from medicinal plants of Zingiberaceae family.  相似文献   

18.
In this study, we screened sixty medicinal plant species from the Brazilian savanna ("cerrado") that could contain useful compounds for the control of tropical diseases. The plant selection was based on existing ethnobotanic information and interviews with local healers. Plant extracts were screened for: (a) molluscicidal activity against Biomphalaria glabrata, (b) toxicity to brine shrimp (Artemia salina L.), (c) antifungal activity in the bioautographic assay with Cladosporium sphaerospermum and (d) antibacterial activity in the agar diffusion assay against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Pseudomonas aeruginosa. Forty-two species afforded extracts that showed some degree of activity in one or more of these bioassays.  相似文献   

19.
The recombinant producer strain expressing Rhodospirillum rubrum L-asparaginase (RrA) has been obtained and a purification procedure of RrA has been developed. The purified enzyme, RrA, has the following biochemical and catalytic characteristics: Km for L-Asn of 0.22 mM, pH optimum at 9.2; temperature optimum at 54°C, pI = 5.1. RrA exhibited a significant cytotoxic effect towards the following cell lines: K562 (IC50 = 1.80 U/mL), DU145 (IC50 = 9.19 U/mL), and MDA-MB-231 (IC50 = 34.62 U/mL). Comparative analysis employing E. coli L-asparaginase II type (EcA) and Erwinia carotovora L-asparaginase (EwA) has shown that the enzyme cytotoxicity towards these cell lines decreased in the following order: EcA > RrA > EwA. Daily administration of RrA (4000 U/kg) to L5178y bearing mice for 10 days (total dose of 40000 U/kg) showed T/C = 172. Data obtained suggest that RrA may be referred to intracellular L-asparaginases with low L-glutaminase activity and marked antiproliferative effect.  相似文献   

20.
A pectin methylesterase was purified to apparent homogeneity from the adult rice weevil, Sitophilus oryzae (L.), by Q-Sepharose and S-Sepharose chromatographies followed by high-performance anion-exchange chromatography. The resulting preparation is the first pectin methylesterase which has been purified from any animal species, although at this point we cannot rule out the possibility that the enzyme is produced by a symbiotic microorganism. The molecular mass of the enzyme was estimated as 38 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This mass is similar to those of pectin methylesterases previously isolated from bacteria, fungi, and plants. The purified enzyme had a broad pH optimum between 6 and 7, which appears consistent with the enzyme's probable site of action, the gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号