首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sotos syndrome is a childhood overgrowth syndrome characterized by a distinctive facial appearance, height and head circumference >97th percentile, advanced bone age, and developmental delay. Weaver syndrome is characterized by the same criteria but has its own distinctive facial gestalt. Recently, a 2.2-Mb chromosome 5q35 microdeletion, encompassing NSD1, was reported as the major cause of Sotos syndrome, with intragenic NSD1 mutations identified in a minority of cases. We evaluated 75 patients with childhood overgrowth, for intragenic mutations and large deletions of NSD1. The series was phenotypically scored into four groups, prior to the molecular analyses: the phenotype in group 1 (n=37) was typical of Sotos syndrome; the phenotype in group 2 (n=13) was Sotos-like but with some atypical features; patients in group 3 (n=7) had Weaver syndrome, and patients in group 4 (n=18) had an overgrowth condition that was neither Sotos nor Weaver syndrome. We detected three deletions and 32 mutations (13 frameshift, 8 nonsense, 2 splice-site, and 9 missense) that are likely to impair NSD1 functions. The truncating mutations were spread throughout NSD1, but there was evidence of clustering of missense mutations in highly conserved functional domains between exons 13 and 23. There was a strong correlation between presence of an NSD1 alteration and clinical phenotype, in that 28 of 37 (76%) patients in group 1 had NSD1 mutations or deletions, whereas none of the patients in group 4 had abnormalities of NSD1. Three patients with Weaver syndrome had NSD1 mutations, all between amino acids 2142 and 2184. We conclude that intragenic mutations of NSD1 are the major cause of Sotos syndrome and account for some Weaver syndrome cases but rarely occur in other childhood overgrowth phenotypes.  相似文献   

2.
Sotos syndrome is a developmental disorder characterized by a suite of clinical features. In children, the three cardinal features of Sotos syndrome are a characteristic facial appearance, learning disability and overgrowth (height and/or head circumference > 2 SDs above average). These features are also evident in adults with this syndrome. Over 90% of Sotos syndrome patients are haploinsufficient for the gene encoding nuclear receptor‐binding Su(var)3‐9, Enhancer‐of‐zesteand Trithorax domain‐containing protein 1 (NSD1). NSD1 is a histone methyltransferase that catalyzes the methylation of lysine residue 36 on histone H3. However, although the symptomology of Sotos syndrome is well established, many aspects of NSD1 biology remain unknown. Here, we assessed the expression of Nsd1 within the mouse brain, and showed a predominantly neuronal pattern of expression for this histone‐modifying factor. We also generated a mouse strain lacking one allele of Nsd1 and analyzed morphological and behavioral characteristics in these mice, showing behavioral characteristics reminiscent of some of the deficits seen in Sotos syndrome patients.  相似文献   

3.
This paper describes the isolation of a novel human gene, NSD1, from the 5q35 breakpoint of t(5;8)(q35; q24.1) in a patient with Sotos syndrome, and NSD1 mutation analysis. Of 112 (95 Japanese and 17 non-Japanese) patients analyzed, 16 (14%) had a heterozygous NSD1 point mutation (10 protein truncation types and six missense types) and 50 (45%) a approximately 0.7-Mb microdeletion involving NSD1. The results indicated that haploinsufficiency of NSD1 is the major cause of Sotos syndrome, and NSD1 plays a role in growth and brain development in humans. Detailed clinical examinations provided a genotype-phenotype correlation in Sotos syndrome, i.e. in patients with deletions, overgrowth is less obvious and mental retardation is more severe than in those with point mutations, and major anomalies were exclusively seen in the former. The results also indicated that Sotos syndrome due to a deletion falls into a contiguous gene syndrome, while Sotos syndrome due to an NSD1 point mutation is a single gene defect, occasionally with an autosomal dominant mode of inheritance. The genomic structure around the deleted and flanking regions revealed the presence of two sets of low copy repeats through which the microdeletion in Sotos syndrome is mediated.  相似文献   

4.
Sotos syndrome is an overgrowth syndrome characterized by pre- and postnatal overgrowth, macrocephaly, advanced bone age, variable degrees of mental retardation, and typical facial features. Defects of the NSD1 gene account for >or=60% of cases of Sotos syndrome, whereas the disease-causing mechanism of other cases remains unknown. Beckwith-Wiedemann syndrome (BWS) is a distinct overgrowth condition characterized by macroglossia, abdominal-wall defects, visceromegaly, embryonic tumors, hemihyperplasia, ear anomalies, renal anomalies, and neonatal hypoglycemia. Deregulation of imprinted growth-regulatory genes within the 11p15 region is the major cause of BWS, whereas the molecular defect underlying a significant proportion of sporadic BWS cases remains unknown. Owing to clinical overlaps between the two syndromes, we investigated whether unexplained cases of Sotos syndrome could be related to 11p15 anomalies and, conversely, whether unexplained BWS cases could be related to NSD1 deletions or mutations. Two 11p15 anomalies were identified in a series of 20 patients with Sotos syndrome, and two NSD1 mutations were identified in a series of 52 patients with BWS. These results suggest that the two disorders may have more similarities than previously thought and that NSD1 could be involved in imprinting of the chromosome 11p15 region.  相似文献   

5.
We identified 266 individuals with intragenic NSD1 mutations or 5q35 microdeletions encompassing NSD1 (referred to as "NSD1-positive individuals"), through analyses of 530 subjects with diverse phenotypes. Truncating NSD1 mutations occurred throughout the gene, but pathogenic missense mutations occurred only in functional domains (P < 2 x 10(-16)). Sotos syndrome was clinically diagnosed in 99% of NSD1-positive individuals, independent of the molecular analyses, indicating that NSD1 aberrations are essentially specific to this condition. Furthermore, our data suggest that 93% of patients who have been clinically diagnosed with Sotos syndrome have identifiable NSD1 abnormalities, of which 83% are intragenic mutations and 10% are 5q35 microdeletions. We reviewed the clinical phenotypes of 239 NSD1-positive individuals. Facial dysmorphism, learning disability, and childhood overgrowth were present in 90% of the individuals. However, both the height and head circumference of 10% of the individuals were within the normal range, indicating that overgrowth is not obligatory for the diagnosis of Sotos syndrome. A broad spectrum of associated clinical features was also present, the occurrence of which was largely independent of genotype, since individuals with identical mutations had different phenotypes. We compared the phenotypes of patients with intragenic NSD1 mutations with those of patients with 5q35 microdeletions. Patients with microdeletions had less-prominent overgrowth (P = .0003) and more-severe learning disability (P = 3 x 10(-9)) than patients with mutations. However, all features present in patients with microdeletions were also observed in patients with mutations, and there was no correlation between deletion size and the clinical phenotype, suggesting that the deletion of additional genes in patients with 5q35 microdeletions has little specific effect on phenotype. We identified only 13 familial cases. The reasons for the low vertical transmission rate are unclear, although familial cases were more likely than nonfamilial cases (P = .005) to carry missense mutations, suggesting that the underlying NSD1 mutational mechanism in Sotos syndrome may influence reproductive fitness.  相似文献   

6.

Background

Research investigating cognition and behaviour in Sotos syndrome has been sporadic and to date, there is no published overview of study findings.

Method

A systematic review of all published literature (1964–2015) presenting empirical data on cognition and behaviour in Sotos syndrome. Thirty four journal articles met inclusion criteria. Within this literature, data relating to cognition and/or behaviour in 247 individuals with a diagnosis of Sotos syndrome were reported. Ten papers reported group data on cognition and/or behaviour. The remaining papers employed a case study design.

Results

Intelligence quotient (IQ) scores were reported in twenty five studies. Intellectual disability (IQ < 70) or borderline intellectual functioning (IQ 70–84) was present in the vast majority of individuals with Sotos syndrome. Seven studies reported performance on subscales of intelligence tests. Data from these studies indicate that verbal IQ scores are consistently higher than performance IQ scores. Fourteen papers provided data on behavioural features of individuals with Sotos syndrome. Key themes that emerged in the behavioural literature were overlap with ASD, ADHD, anxiety and high prevalence of aggression/tantrums.

Conclusion

Although a range of studies have provided insight into cognition and behaviour in Sotos syndrome, specific profiles have not yet been fully specified. Recommendations for future research are provided.  相似文献   

7.
BACKGROUND: Deletions and mutations in the NSD1 gene are the major cause of Sotos syndrome. We wanted to evaluate the genotype-phenotype correlation in patients suspected of having Sotos syndrome and determine the best discriminating parameters for the presence of a NSD1 gene alteration. METHODS: Mutation and fluorescence in situ hybridization analysis was performed on blood samples of 59 patients who were clinically scored into 3 groups. Clinical data were compared between patients with and without NSD1 alterations. With logistic regression analysis the best combination of predictive variables was obtained. RESULTS: In the groups of typical, dubious and atypical Sotos syndrome, 81, 36 and 0% of the patients, respectively, showed NSD1 gene alterations. Four deletions were detected. In 23 patients (2 families) 19 mutations were detected (1 splicing defect, 3 non-sense, 7 frameshift and 8 missense mutations). The best predictive parameters for a NSD1 gene alteration were frontal bossing, down-slanted palpebral fissures, pointed chin and overgrowth. Higher incidences of feeding problems and cardiac anomalies were found. The parameters, delayed development and advanced bone age, did not differ between the 2 subgroups. CONCLUSIONS: In our patients suspected of having Sotos syndrome, facial features and overgrowth were highly predictive of a NSD1 gene aberration, whereas developmental delay and advanced bone age were not.  相似文献   

8.
We report the first case of the association of Sotos syndrome and gastric carcinoma (containing signet ring cells) in a twin patient. The other-probably monozygous-twin is also affected by the Sotos syndrome. The association of malign tumors in Sotos syndrome and other overgrowth syndromes is discussed.  相似文献   

9.
We describe a girl with Sotos syndrome presenting at two and a half years age with developmental delay. She has camptodactyly which has not previously been reported in Sotos syndrome but is a common finding in Weaver syndrome. Both these conditions have been reported to have NSD1 gene mutations. This report is consistent with the conditions being allelic.  相似文献   

10.
Tall stature is less often experienced as an important problem than short stature. However, a correct diagnosis may be of eminent importance, especially when interventions are planned, or to know the natural history. Overgrowth can be caused by endocrine disorders and skeletal dysplasias, but also by several genetic syndromes. Despite a systematic diagnostic approach, there will be patients with tall stature who do not fit a known diagnosis. In this group of patients possibilities of genetic analysis do exist, but are not common practice. The FMR1 gene should be analyzed in patients with tall stature and mental retardation, and in these patients the NSD1 gene can be considered whenever some features of Sotos syndrome do exist. In tall patients without mental retardation and some features of Sotos or Beckwith-Wiedemann syndrome it may still be useful to look for mutations in the NSD1 gene, but also for changes in the 11p15 region. The various possibilities are discussed and placed in a flowchart.  相似文献   

11.
Two siblings are described with duplication 14q/deletion 2q due to a paternal translocation (2;14) (q37.1;q31.2). The first one, a boy, born at term, lived 14 days. The second one, a female foetus, was born after induced labour when the anomaly was discovered by way of amniocentesis. They both had almost identical phenotypes. From a study of the literature it is inferred that a typical asymmetric head form, low set abnormal ears, micrognathia, long upper lip, rib anomalies, camptodactyly, long fingers and contractures are prominent features of the syndrome.  相似文献   

12.
Summary Several members of a family with a translocation between the short arm of chromosome 9 and the long arm of chromosome 13 (9p-;13q+) are presented. Although the translocation found in various members of the family looked alike and appeared to be balanced, the clinical features were different. The like-sex twins displayed some features of 9p monosomy syndrome, whereas their mother and maternal grandmother, who apparently had the same translocation, showed only a few features of 9p- syndrome in addition to mild mental retardation. We suggest that a minute deletion of the short arm of chromosome 9 may cause features of 9p- syndrome and that the clinical features of this syndrome in older individuals may be too mild for the clinical diagnosis to be possible.  相似文献   

13.
Summary This paper reports the case of a one-day-old male child presenting the typical features of Patau's syndrome. The cytogenetic study by means of conventional techniques and GTG and QFQ banding techniques showed that the chromosomal pattern of the propositus was 46,XYq+,-21,+t(13q21q) 15ps+,22ps+, and that the nondisjunction that originated the translocation and trisomy had occurred in the mother.  相似文献   

14.
Mechanisms predisposing to childhood overgrowth and cancer   总被引:1,自引:0,他引:1  
Several overgrowth conditions are believed to be associated with elevated risks of cancer, particularly in childhood. Beckwith-Wiedemann syndrome and Sotos syndrome are the most common overgrowth conditions, and both carry increased risks of certain tumors. In recent years, the identification of both the gene causing Sotos syndrome and the epigenetic subgroups underlying Beckwith-Wiedemann syndrome have enabled clarification of the cancer types and risks associated with these conditions. This has revealed striking differences in the cancer phenotypes associated with different molecular abnormalities. Elucidation of the mechanisms underlying cancer in overgrowth syndromes might yield important insights into the molecular basis of childhood tumors.  相似文献   

15.
We report a 15 month old boy with prominent metopic suture, epicanthal folds, strabismus, low-set ears, microretrognathia, large anterior fontanel, bilateral simian creases, muscular hypotonia, and severe psychomotor retardation. He also had West syndrome. An electroencephalogram showed hypsarrythmia, and cranial MR indicated a myelinisation delay. Standard karyotyping showed additional material on one chromosome 9p. Using FISH, a terminal 7q duplication spanning 26 Mb in size and a terminal 9p deletion sized (at least) 9.1 Mb were identified. The father had a karyotype of t(7;9)(q33;p23) and the mother's karyotype was normal. The boy presented typical facial features of the distal 7q duplication syndrome but no genital anomalies attributable to his distal 9p deletion. We assume that the severe epilepsy is likely due to the trisomy 7q.  相似文献   

16.
Summary A newborn girl had features of the 4p- syndrome. Cytogenetic studies of the mother showed a translocation t(1;4)(q11;p16). The proband had the translocation, but the band 4p16 had been lost.  相似文献   

17.
We describe a 17-month-old infant with clinical features of Down syndrome and a normal karyotype by standard chromosomal analysis, her two uncles aged 28 and 30 years, respectively, with reduced intelligence and unusual appearance but not apparent Down syndrome, and a severely retarded 6-year-old girl with dysmorphy and epilepsy from the same family. Cytogenetic studies of patients and normal intervening relatives had been carried out at different institutions with normal results. Fluorescence in situ hybridization using whole chromosome painting and unique-copy probes (cosmids) and high-resolution banding revealed a familial subtelomeric translocation of chromosomes 18 and 21, resulting in partial trisomy 21 in the infant and her two uncles, and partial monosomy 21 in the 6-year-old girl. Cytogenetic breakpoints were located in bands 18q23 and 21q22.1, respectively. The molecular breakpoint on chromosome 21 was located between D21S211 (proximal) and D21S1283 (distal) and thus maps within the Down syndrome critical region. Received: 11 November 1996 / Accepted: 29 April 1997  相似文献   

18.
Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2?Cq35.3 in humans (Df(13)Ms2Dja +/? mice). Surprisingly Df(13)Ms2Dja +/? mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja +/? mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19Rik?CB4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system.  相似文献   

19.

Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2–q35.3 in humans (Df(13)Ms2Dja +/− mice). Surprisingly Df(13)Ms2Dja +/− mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja +/− mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19RikB4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system.

  相似文献   

20.
A boy with mental and growth retardation associated with congenital anomalies has a partial duplication of the distal 4q chromosome region as a result of inheritance of a t(4:20) from his mother. Comparison with twelve other patients from the literature indicates that similar clinical features may be associated with this chromosome change suggesting a partial 4q duplication syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号