首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating system. The Greater Rhea (Rhea americana), a South American ratite species, reproduces seasonally and has a complex mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemiluminescence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones, testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited during the non reproductive season (February to July), whereas their maximum values were reached in September for males and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes). Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the “Challenge Hypothesis”. In females, the high estradiol levels throughout the reproductive season would be needed to sustain their long egg-laying period.  相似文献   

2.
Male aggressive behavior is generally regulated by testosterone (T). In most temperate breeding males, aggressive behavior is only expressed during the reproductive period. At this time circulating T concentrations, brain steroid receptors, and steroid metabolic enzymes are elevated in many species relative to the nonreproductive period. Many tropical birds, however, display aggressive behavior both during the breeding and the nonbreeding season, but plasma levels of T can remain low throughout the year and show little seasonal fluctuation. Studies on the year-round territorial spotted antbird (Hylophylax n. naevioides) suggest that T nevertheless regulates aggressive behavior in both the breeding and nonbreeding season. We hypothesize that to regulate aggressive behaviors during the nonbreeding season, when T is at its minimum, male spotted antbirds increase brain sensitivity to steroids. This can be achieved by locally up-regulating androgen receptors (ARs), estrogen receptors (ERs), or the enzyme aromatase (AROM) that converts T into estradiol. We therefore compared mRNA expression of AR, ERalpha, and AROM in free- living male spotted antbirds across reproductive and nonreproductive seasons in two brain regions known to regulate both reproductive and aggressive behaviors. mRNA expression of ERalpha in the preoptic area and AR in the nucleus taeniae were elevated in male spotted antbirds during the nonbreeding season when circulating T concentrations were low. This unusual seasonal receptor regulation may represent a means for the year-round regulation of vertebrate aggressive behavior via steroids by increasing the brain's sensitivity to sex steroids during the nonbreeding season.  相似文献   

3.
Testosterone is important in mediating investment in competing activities such as territoriality, parental care, and maintenance behavior. Most studies of testosterone function have focused on temperate species and less is known about the role of testosterone in territoriality or variation in mating systems of tropical species. Results of studies of tropical species with year‐round territoriality indicate that territorial aggression during the non‐breeding season is maintained with low levels of testosterone, and increased levels of testosterone in males during the breeding season may increase mating opportunities or aid in competition for mates. We studied seasonal variation in testosterone levels of male Red‐throated Ant‐tanagers (Habia fuscicauda), a socially monogamous species with year‐round territoriality and with high levels of extra‐pair matings (41% of young), to determine if testosterone levels increased during the breeding season. We captured males during the non‐breeding and breeding seasons and collected blood samples for hormone analysis. We found that mean testosterone concentrations were low during the non‐breeding season (0.18 ± 0.05 [SD] ng/ml, range = 0.11–0.31 ng/ml), and significantly higher during the breeding season (2.37 ± 2.47 ng/ml, range = 0.14–6.28 ng/ml). Testosterone levels of breeding males were not related to aggression levels as measured by attack rates toward a stuffed decoy or singing rates during simulated territorial intrusions. These results suggest that the higher testosterone levels of breeding male Red‐throated Ant‐tanagers may be important in an extra‐pair mating context, possibly in display behavior or mate attraction, but additional study is needed to clarify the role of testosterone during the breeding season.  相似文献   

4.
Large flying foxes (Pteropus vampyrus) are a socially complex species. In situ colonies typically comprise thousands of individuals in small harems of one male to many females. In ex situ environments, all‐male colonies are becoming more common due to a surplus of males in the population. There is limited information describing the hormonal and behavioral patterns of all‐male colonies during the breeding season. We assessed seasonal changes in hormones and behavior in an all‐male colony of 12 large flying foxes at Disney's Animal Kingdom®. We validated hormone assays using morning urine and fecal samples to assess seasonal changes in excreted immunoreactive testosterone and glucocorticoid metabolites. We collected behavior data using an all‐occurrence method, recording agonistic behaviors related to territorial defense (hooking, biting, wing flexing, vocalizing, and wrestling), and sexual behavior (mounting and frontal grabbing). Results indicated that (i) we could reliably measure testosterone and glucocorticoid metabolites concentrations from fecal and urine samples collected from individual bats; (ii) there were distinct relationships between changes in levels of agonism and hormone concentrations throughout the year; and (iii) three agonistic behaviors (chasing, wrestling, and open‐mouth threat) peaked prior to the increase in testosterone and glucocorticoid hormones measured during the breeding season. These three behaviors could potentially be used as early indicators to signal the onset of the breeding season and allow time to implement ex situ management changes to reduce the incidence of agonism between individuals.  相似文献   

5.
In many birds and mammals, male territorial aggression is modulated by elevated circulating concentrations of the steroid hormone testosterone (T) during the breeding season. However, many species are territorial also during the non-breeding season, when plasma T levels are basal. The endocrine control of non-breeding territorial aggression differs considerably between species, and previous studies on wintering birds suggest differences between migratory and resident species. We investigated the endocrine modulation of territorial aggression during the breeding and non-breeding season in a resident population of European stonechats (Saxicola torquata rubicola). We recorded the aggressive response to a simulated territorial intrusion in spring and winter. Then, we compared the territorial aggression between seasons and in an experiment in which we blocked the androgenic and estrogenic action of T. We found no difference in the aggressive response between the breeding and the non-breeding season. However, similarly to what is found in migratory stonechats, the hormonal treatment decreased aggressive behaviors in resident males in the breeding season, whereas no effects were recorded in the non-breeding season. When we compared the aggressive responses of untreated birds with those obtained from migratory populations in a previous study, we found that territorial aggression of resident males was lower than that of migratory males during the breeding season. Our results show that in a resident population of stonechats T and/or its metabolites control territorial aggression in the breeding but not in the non-breeding season. In addition, our study supports the hypothesis that migratory status does modulate the intensity of aggressive behavior.  相似文献   

6.
Extensive research has focused on territorial aggression during the breeding season and the roles of circulating testosterone (T) and its conversion to 17beta-oestradiol (E2) in the brain. However, many species also defend territories in the non-breeding season, when circulating T-levels are low. The endocrine control of non-breeding territoriality is poorly understood. The male song sparrow of Washington State is highly territorial year-round, but plasma T is basal in the non-breeding season (autumn and winter). Castration has no effect on aggression in autumn, suggesting that autumnal territoriality is independent of gonadal hormones. However, non-gonadal sex steroids may regulate winter territoriality (e.g. oestrogen synthesis by brain aromatase). In this field experiment, we treated wild non-breeding male song sparrows with a specific aromatase inhibitor (fadrozole, FAD) using micro-osmotic pumps. FAD greatly reduced several aggressive behaviours. The effects of FAD were reversed by E2 replacement. Treatment did not affect body condition or plasma corticosterone, suggesting that all subjects were healthy These data indicate that E2 regulates male aggression in the non-breeding season and challenge the common belief that aggression in the non-breeding season is independent of sex steroids. More generally, these results raise fundamental questions about how sexual and/or aggressive behaviours are maintained in a variety of model vertebrate species despite low circulating levels of sex steroids or despite castration. Such non-classical endocrine mechanisms may be common among vertebrates and play an important role in the regulation of behaviour.  相似文献   

7.
The hormonal control of territorial aggression in male and female vertebrates outside the breeding season is still unresolved. Most vertebrates have regressed gonads when not breeding and do not secrete high levels of sex steroids. However, recent studies implicate estrogens in the regulation of non-breeding territoriality in some bird species. One possible source of steroids during the non-breeding season could be the adrenal glands that are known to produce sex steroid precursors such as dehydroepiandrosterone (DHEA). We studied tropical, year-round territorial spotted antbirds (Hylophylax n. naevioides) and asked (1). whether both males and females are aggressive in the non-breeding season and (2). whether DHEA is detectable in the plasma at that time. We conducted simulated territorial intrusions (STIs) with live decoys to male and female free-living spotted antbirds in central Panama. Non-breeding males and females displayed robust aggressive responses to STIs, and responded more intensely to decoys of their own sex. In both sexes, plasma DHEA concentrations were detectable and higher than levels of testosterone (T) and 17beta-estradiol (E(2)). In males, plasma DHEA concentrations were positively correlated with STI duration. Next, we conducted STIs in captive non-breeding birds. Captive males and females displayed robust aggressive behavior. Plasma DHEA concentrations were detectable in both sexes, whereas T was non-detectable (E(2) was not measured). Plasma DHEA concentrations of males were positively correlated with aggressive vocalizations and appeared to increase with longer STI durations. We conclude that male and female spotted antbirds can produce DHEA during the non-breeding season and DHEA may serve as a precursor of sex steroids for the regulation of year-round territorial behavior in both sexes.  相似文献   

8.
Male golden-collared manakins gather on leks and perform an acrobatic display to attract females. In temperate breeding species, testosterone (T) activation of courtship displays has been well studied. Few studies have examined T activation of displays in tropical species; even fewer have explored the activational role of T in elaborate courtship displays such as in the manakin. In some tropical species, including manakins, territorial aggression or song behavior are uncoupled from T. We have previously shown that T activates display behavior in manakin males when endogenous T levels are low in the non-courtship season. To understand how T functions in breeding birds, we examined T levels in a large group of manakins sampled during the courtship and non-courtship season. In addition, during the courtship season, we gave T implants to adult males, juvenile males, and females. We found that T levels were low during the non-courtship season and comparatively higher on average during the courtship season. However, T levels were low in many adult males during the courtship season, especially when compared to temperate breeding species. Regardless of initial endogenous T levels during the courtship season, T implants did not increase the display frequency of adult males. T-treated females and juvenile males did display under similar conditions. Our data suggest that the effects of T on manakin display vary with season, sex, and age and that high T is not necessary for display.  相似文献   

9.
The dynamics and regulation of oogenesis in single and multiple-spawner cyprinid fish showing group-synchronous oocyte development, was investigated in three species from the River Meuse (Belgium): the roach Rutilus rutilus as a single spawner, and the bleak Alburnus alburnus and the white bream Blicca bjoerkna as multiple spawners. This paper compares the seasonal profiles of sex steroids (oestradiol-17β, testosterone and 17,20β-dihydroxy-4-pregnen-3-one) and plasma alkali-labile protein phosphorus. Different patterns of plasma oestradiol-17β (E2) and plasma protein phosphorus (PPP) have been observed not only between the single and the multiple spawner fish, but also among the two multiple spawners. In roach, two increases of E2 levels were observed. The first occurred in September after a short gonadal quiescent period, and coincided with the increase of the PPP at the onset of exogenous vitellogenesis. The second took place in spring before the spawning season. The low PPP recorded during that period probably reflected its rapid incorporation by the oocytes. In both multiple spawners, highest values of PPP were recorded just before the spawning season. In white bream, the PPP declined progressively once the differentiation of exogenous vitellogenic oocytes was completed before the onset of the spawning season. In bleak, PPP levels remained high throughout the spawning season and corresponded to a sustained oocyte recruitment during the whole of this period. Regardless of the pattern of oocyte growth recruitment, the E2 concentrations were high in both multiple spawner species during the breeding season. In the three species, testosterone levels remained low regardless of the maturation stage (ranging from 0.6 to 13.4ng ml?1). Except for relatively high concentrations of 17,20βP in roach during final maturation and postspawning stages (20 and 28 ng ml?1, respectively), low levels of this steroid were measured in these cyprinids, and especially in the multiple spawner fish. The role of this progestogen as the maturation inducing Steroid is discussed.  相似文献   

10.
In many species, territoriality is expressed only during the breeding season, when plasma testosterone (T) is elevated. In contrast, in song sparrows (Melospiza melodia morphna), males are highly territorial during the breeding (spring) and nonbreeding (autumn) seasons, but not during molt (late summer). In autumn, plasma sex steroids are basal, and castration has no effect on aggression. However, inhibition of aromatase reduces nonbreeding aggression, suggesting that neural steroid metabolism may regulate aggressive behavior. In wild male song sparrows, we examined the neural distribution of aromatase mRNA and seasonal changes in the activities of aromatase, 5α‐, and 5β‐reductase, enzymes that convert T to 17β‐estradiol, 5α‐dihydrotestosterone (5α‐DHT, a potent androgen), or 5β‐DHT (an inactive metabolite), respectively. Enzyme activities were measured in the diencephalon, ventromedial telencephalon (vmTEL, which includes avian amygdala), caudomedial neostriatum (NCM), and the hippocampus of birds captured during spring, molt, or autumn. Aromatase and 5β‐reductase changed seasonally in a region‐specific manner. Aromatase in the diencephalon was higher in spring than in molt and autumn, similar to seasonal changes in male sexual behavior. Aromatase activity in the vmTEL was high in both spring and autumn but significantly reduced at molt, similar to seasonal changes in aggression. 5β‐Reductase was not elevated during molt, suggesting that low aggression during molt is not a result of increased inactivation of androgens. These data highlight the relevance of neural steroid metabolism to the expression of natural behaviors by free‐living animals. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 209–221, 2003  相似文献   

11.
Plasma testosterone increases during breeding in many male vertebrates and has long been implicated in the promotion of aggressive behaviors relating to territory and mate defense. Males of some species also defend territories outside of the breeding period. For example, the European nuthatch (Sitta europaea) defends an all-purpose territory throughout the year. To contribute to the growing literature regarding the hormonal correlates of non-breeding territoriality, we investigated the seasonal testosterone and corticosterone profile of male (and female) nuthatches and determined how observed hormone patterns relate to expression of territorial aggression. Given that non-breeding territoriality in the nuthatch relates to the reproductive context (i.e., defense of a future breeding site), we predicted that males would exhibit surges in plasma testosterone throughout the year. However, we found that males showed elevated testosterone levels only during breeding. Thus, testosterone of gonadal origin does not appear to be involved in the expression of non-breeding territoriality. Interestingly, territorial behaviors of male nuthatches were stronger in spring than in autumn, suggesting that in year-round territorial species, breeding-related testosterone elevations may upregulate male-male aggression above non-breeding levels. In females, plasma testosterone was largely undetectable. We also examined effects of simulated territorial intrusions (STIs) on testosterone and corticosterone levels of breeding males. We found that STIs did not elicit a testosterone response, but caused a dramatic increase in plasma corticosterone. These data support the hypothesis that corticosterone rather than testosterone may play a role in the support of behavior and/or physiology during acute territorial encounters in single-brooded species.  相似文献   

12.
Mockingbirds (Mimus polyglottos) show intense territorial activity in the autumn as newcomers attempt to establish space within resident populations. Examination of autumnal territorial behavior showed that unmated males sing more and engage in more territorial fights than mated males. Newcomers that have just acquired space also sing more and show more territorial fights than birds resident to the population for at least one prior season. Among established residents, the average number of territorial fights was greater in birds that shared more territory boundaries with new residents. Radioimmunoassay of plasma samples taken from males during the molt and following the onset of territorial defense showed that during both periods plasma concentrations of testosterone (T), dihydrotestosterone (DHT), and estradiol were basal or below the sensitivity of the assay system. Moreover, groups of males that differed in song and territorial aggression did not differ in plasma concentrations of T, DHT, or luteinizing hormone (LH). Hormone analyses confirm measurements on several other avian species suggesting that sex steroid concentrations are low in the fall and winter and that variations in aggressive behavior at this time of year may be unrelated to LH and androgen levels. Our observations contribute to a growing body of work in temperate passerines indicating that the role of androgens in mediating aggressive challenge may be restricted to the breeding season. The possible hormonal basis (if any) of song and territorial aggression in mockingbirds outside the breeding season remains obscure.  相似文献   

13.
In Lake Malawi, two ecologically distinct lineages of cichlid fishes (rock‐ vs sand‐dwelling ecotypes, each comprised of over 200 species) evolved within the last million years. The rock‐dwelling species (Mbuna) are aggressively territorial year‐round and males court and spawn with females over rocky substrate. In contrast, males of sand‐dwelling species are not territorial and instead aggregate on seasonal breeding leks in which males construct courtship “bowers” in the sand. However, little is known about how phenotypic variation in aggression is produced by the genome. In this study, we first quantify and compare behavior in seven cichlid species, demonstrating substantial ecotype and species differences in unconditioned mirror‐elicited aggression. Second, we compare neural activity in mirror‐elicited aggression in two representative species, Mchenga conophoros (sand‐dwelling) and Petrotilapia chitimba (rock‐dwelling). Finally, we compare gene expression patterns between these two species, specifically within neurons activated during mirror aggression. We identified a large number of genes showing differential expression in mirror‐elicited aggression, as well as many genes that differ between ecotypes. These genes, which may underly species differences in behavior, include several neuropeptides, genes involved in the synthesis of steroid hormones and neurotransmitter activity. This work lays the foundation for future experiments using this emerging genetic model system to investigate the genomic basis of evolved species differences in both brain and behavior.  相似文献   

14.
Prenatal testosterone exposure impacts postnatal reproductive and endocrine function, leading to alterations in sex steroid levels. Because gonadal steroids are key regulators of cardiovascular function, it is possible that alteration in sex steroid hormones may contribute to development of hypertension in prenatally testosterone-exposed adults. The objectives of this study were to evaluate whether prenatal testosterone exposure leads to development of hypertension in adult males and females and to assess the influence of gonadal hormones on arterial pressure in these animals. Offspring of pregnant rats treated with testosterone propionate or its vehicle (controls) were examined. Subsets of male and female offspring were gonadectomized at 7 wk of age, and some offspring from age 7 to 24 wk received hormone replacement, while others did not. Testosterone exposure during prenatal life significantly increased arterial pressure in both male and female adult offspring; however, the effect was greater in males. Prenatal androgen-exposed males and females had more circulating testosterone during adult life, with no change in estradiol levels. Gonadectomy prevented hyperandrogenism and also reversed hypertension in these rats. Testosterone replacement in orchiectomized males restored hypertension, while estradiol replacement in ovariectomized females was without effect. Steroidal changes were associated with defective expression of gonadal steroidogenic genes, with Star, Sf1, and Hsd17b1 upregulation in testes. In ovaries, Star and Cyp11a1 genes were upregulated, while Cyp19 was downregulated. This study showed that prenatal testosterone exposure led to development of gonad-dependent hypertension during adult life. Defective steroidogenesis may contribute in part to the observed steroidal changes.  相似文献   

15.
Sex change in teleost fishes is commonly regulated by social factors. In species that exhibit protogynous sex change, such as the orange-spotted grouper Epinephelus coioides, when the dominant males are removed from the social group, the most dominant female initiates sex change. The aim of this study was to determine the regulatory mechanisms of socially controlled sex change in E. coioides. We investigated the seasonal variation in social behaviours and sex change throughout the reproductive cycle of E. coioides, and defined the behaviour pattern of this fish during the establishment of a dominance hierarchy. The social behaviours and sex change in this fish were affected by season, and only occurred during the prebreeding season and breeding season. Therefore, a series of sensory isolation experiments was conducted during the breeding season to determine the role of physical, visual and olfactory cues in mediating socially controlled sex change. The results demonstrated that physical interactions between individuals in the social groups were crucial for the initiation and completion of sex change, whereas visual and olfactory cues alone were insufficient in stimulating sex change in dominant females. In addition, we propose that the steroid hormones 11-ketotestosterone and cortisol are involved in regulating the initiation of socially controlled sex change.  相似文献   

16.
In the African cichlid fish, Haplochromis burtoni, males are either territorial or nonterritorial. Territorial males suppress reproductive function in the nonterritorial males, and have larger gonads and larger gonadotropin-releasing hormone- (GnRH) containing neurons in the preoptic area (POA). We describe an experiment designed to establish the causal relationship between large GnRH neurons and large testes in these males by determining the feedback effects of gonadal sex steroids on the GnRH neurons. Territorial males were either castrated or sham-operated, 4 weeks after which they were sacrificed. Circulating steroid levels were measured, and the GnRH-containing neurons were visualized by staining sagittal sections of the brains with an antibody to salmon GnRH. The soma areas of antibody-stained neurons were measured with a computer-aided imaging system. Completely castrated males had markedly reduced levels of circulating sex steroids [11-ketotestosterone (11 KT) and testosterone (T)], as well as 17β-estradiol (E2). POA GnRH neurons in castrates showed a significant increase in mean soma size relative to the intact territorial males. Hence, in mature animals, gonadal steroids act as a brake on the growth of GnRH-containing neurons, and gonadal products are not responsible for the large GnRH neurons characteristic of territorial males. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
During the nonbreeding season, when gonadal androgen synthesis is basal, recent evidence suggests that neurosteroids regulate the aggression of male song sparrows. In particular, dehydroepiandrosterone (DHEA) is rapidly converted in the brain to androgens in response to aggressive interactions. In other species, aggressive encounters increase systemic glucocorticoid levels. However, the relationship between aggression and local steroid levels is not well understood. Here, during the breeding and nonbreeding seasons, we tested the effects of a simulated territorial intrusion (STI) on DHEA and corticosterone levels in the brachial and jugular plasma. Jugular plasma is enriched with neurosteroids and provides an indirect index of brain steroid levels. Further, during the nonbreeding season, we directly measured steroid levels in the brain and peripheral tissues. Both breeding and nonbreeding males displayed robust aggressive responses to STI. During the breeding season, STI increased brachial and jugular corticosterone levels and jugular DHEA levels. During the nonbreeding season, STI did not affect plasma corticosterone levels, but increased jugular DHEA levels. During the nonbreeding season, STI did not affect brain levels of corticosterone or DHEA. However, STI did increase corticosterone and DHEA concentrations in the liver and corticosterone concentrations in the pectoral muscle. These data suggest that 1) aggressive social interactions affect neurosteroid levels in both seasons and 2) local steroid synthesis in peripheral tissues may mobilize energy reserves to fuel aggression in the nonbreeding season. Local steroid synthesis in brain, liver or muscle may serve to avoid the costs of systemic increases in corticosterone and testosterone.  相似文献   

18.
Past studies have suggested a fundamental difference in testosterone concentrations between tropical and northern latitude male birds, with the convention being that males in the tropics express much lower levels of testosterone. However, recent comparative studies have shown that tropical males with a short and synchronous breeding season (i.e. a breeding season typical of northern species) express maximum testosterone levels similar to those of northern latitude birds. Here, we ask the converse: do northern latitude songbirds that express a defining life‐history characteristic typical of the tropics, i.e. year‐round territoriality, have an annual testosterone profile similar to that of tropical songbirds? For the few year‐round territorial species for which data are available, we found that seasonal testosterone profiles and seasonal maxima in plasma testosterone were similar between males of tropical and non‐tropical species. For example, males of both groups expressed seasonal maxima during the period when females were fertile, and testosterone levels at this time were similar. In contrast, this and other studies show that species with seasonal territories typically express maximum testosterone levels earlier in the breeding cycle, when territories are first being established. Taken together, we suggest that specific life‐history traits may play a more important role in determining testosterone profiles of tropical and non‐tropical birds than breeding latitude and encourage further studies to allow for more formal comparisons.  相似文献   

19.
In many species, territoriality is expressed only during the breeding season, when plasma testosterone (T) is elevated. In contrast, in song sparrows (Melospiza melodia morphna), males are highly territorial during the breeding (spring) and nonbreeding (autumn) seasons, but not during molt (late summer). In autumn, plasma sex steroids are basal, and castration has no effect on aggression. However, inhibition of aromatase reduces nonbreeding aggression, suggesting that neural steroid metabolism may regulate aggressive behavior. In wild male song sparrows, we examined the neural distribution of aromatase mRNA and seasonal changes in the activities of aromatase, 5 alpha-, and 5 beta-reductase, enzymes that convert T to 17 beta-estradiol, 5 alpha-dihydrotestosterone (5 alpha-DHT, a potent androgen), or 5 beta-DHT (an inactive metabolite), respectively. Enzyme activities were measured in the diencephalon, ventromedial telencephalon (vmTEL, which includes avian amygdala), caudomedial neostriatum (NCM), and the hippocampus of birds captured during spring, molt, or autumn. Aromatase and 5 beta-reductase changed seasonally in a region-specific manner. Aromatase in the diencephalon was higher in spring than in molt and autumn, similar to seasonal changes in male sexual behavior. Aromatase activity in the vmTEL was high in both spring and autumn but significantly reduced at molt, similar to seasonal changes in aggression. 5 beta-Reductase was not elevated during molt, suggesting that low aggression during molt is not a result of increased inactivation of androgens. These data highlight the relevance of neural steroid metabolism to the expression of natural behaviors by free-living animals.  相似文献   

20.
The ultimate explanations for avian brood parasitism have been studied intensively as a model system for coevolution, but little is known about the proximate mechanisms, for example hormonal regulation, underlying brood parasitic behaviour. In this study, we explored seasonal hormone profiles in two brood parasitic Cuculus species breeding in the Republic of Korea. As brood parasites have relatively simple breeding stages without incubation and provisioning, we predicted that during the breeding season individuals would exhibit similar levels of testosterone (T) and stress‐induced corticosterone (CORT), hormones that are known to be closely related to the transition of breeding stages. We also assessed how these hormone profiles were associated with traits such as body size and sex. Overall, male cuckoos showed similarly high T levels throughout the breeding season, as predicted, but individual variation became greater as the season progressed. Individual CORT levels tended to decrease as the season progressed, although the decrease was significant only in Common Cuckoos Cuculus canorus. We also found that male Lesser Cuckoos Cuculus poliocephalus showed a much higher level of T than females, as expected, but this sexual difference was not observed in Common Cuckoos. Our results suggest that the seasonal hormone profiles of avian brood parasites are likely to be similar to typical hormone profiles expected for non‐brood parasites during the breeding season. This may suggest that not only the breeding cycle but also other factors such as social interaction may be affected by hormonal changes. Further studies are needed to fully understand the proximate mechanism of avian brood parasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号