首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine and porcine beta-lactoglobulins were cloned and expressed in host cells with the aim of developing the tools necessary for their structural, functional and conformational characterisation by NMR techniques. Both lipocalins were expressed in Pichia pastoris, where the use of a constitutive promoter turned out to allow the highest productivity. The yield of recombinant proteins was further improved through multiple integration of the encoding genes and by increasing aeration of the transformed cultures. Both proteins were obtained in the culture medium at the concentration of 200 microg/ml. Recombinant lipocalins were purified by ion-exchange chromatography from the culture medium. A preliminary NMR characterisation showed that both proteins were correctly folded.  相似文献   

2.
Lactoferrin is an 80kDa iron-binding glycoprotein. It is secreted by exocrine glands. Many functions such as iron sequestering, anti-bacterial activity, regulation of gene expression, and immunomodulation are attributed to it. In the present study, we report the production of recombinant equine lactoferrin (ELF) in the methylotropic yeast Pichia pastoris using pPIC9K vector. The recombinant protein was purified by one-step affinity chromatography using heparin-Sepharose column. The purified protein has a molecular weight of 80kDa and reacted with antibody raised against the native equine lactoferrin. Its N-terminal sequence was identical to that of the native ELF. The iron-binding behavior and circular dichroism studies of the purified protein indicate that it has folded properly. The recombinant protein appears to be hyperglycosylated by the host strain, GS115. This is the first heterologous expression of equine lactoferrin and also the first report of intact lactoferrin expression using P. pastoris system. An yield of 40mg/l obtained in shake-flask cultures with this system, which is higher than the reported values for other systems.  相似文献   

3.
4.
Here we report the recombinant expression of the catalytically active phosphatase domain of the Saccharomyces cerevisiae protein phosphatase 1 (Ppt1) in E. coli. Ppt1 consists of two domains: a 20 kDa TPR (tetratricopeptide repeat) domain, which mediates protein-protein interactions and directs Ppt1 to potential substrate proteins, e.g. the molecular chaperone Hsp90. The second, a 40 kDa phosphatase domain, exhibits catalytic activity and dephosphorylates phosphorylated serine/threonine residues of respective substrate proteins. The Ppt1 phosphatase domain was cloned and expressed in E. coli in unsoluble inclusion bodies. After isolating these, the aggregates were denatured with guanidinium hydrochloride and soluble protein was purified using affinity chromatography. Optimal renaturation conditions led to large amounts of the refolded phosphatase domain in high purity. Interestingly, further enzymatic studies revealed that the domain is not only correctly folded, but also shows higher catalytic activity compared to the full length protein.  相似文献   

5.
We used a vaccinia virus expression system for the production of recombinant human cathepsin D (CD), a lysosomal protease implicated in various patho-physiological processes including cancer, neurodegeneration, and development. The recombinant protein was successfully expressed in various human and non-human cells. It was correctly synthesized as a glycosylated 53 kDa precursor (proCDrec) that reacted with a polyclonal antibody against residues 7-21 of the propeptide sequence. In contrast to the control, in cells infected with the recombinant virus proCDrec was largely secreted into the culture medium, although it contained high-mannose oligosaccharides with uncovered mannose-6-phosphate residues. Intracellular proCDrec was processed into the 48 kDa intermediate single-chain and the 31 plus 13 kDa double-chain forms, however, the processing was slower than in normal cells. A method based on Pepstatin A-affinity chromatography allowed to isolate the recombinant protein from the medium of infected cells. Based on its latency in activity assay at acid pH and on its reactivity with antibodies specific for the N-terminus, the purified protein was judged to be in the inactive precursor form. During incubation at acid pH the purified proCDrec underwent autocatalytic processing and acquired pepstatin A-sensitive enzyme activity, as expected for correctly folded proCD. Antiserum raised in rabbits against proCDrec specifically reacted with human, but not with mouse proCD under non-denaturing conditions. We conclude that our vaccinia virus-directed proCDrec displays structural and functional features resembling those of native human proCD. This system can therefore be exploited for the synthesis of large quantities of human proCD, allowing further studies on the structure and function of this interesting protein.  相似文献   

6.
Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays.  相似文献   

7.
Calreticulin is a 46-kDa Ca(2+)-binding chaperone of the endoplasmic reticulum membranes. The protein binds Ca(2+) with high capacity, affects intracellular Ca(2+) homeostasis, and functions as a lectin-like chaperone. In this study, we describe expression and purification procedures for the isolation of recombinant rabbit calreticulin. The calreticulin was expressed in Pichia pastoris and purified to homogeneity by DEAE-Sepharose and Resource Q FPLC chromatography. The protein was not retained in the endoplasmic reticulum of Pichia pastoris but instead it was secreted into the external media. The purification procedures reported here for recombinant calreticulin yield homogeneous preparations of the protein by SDS-PAGE and mass spectroscopy analysis. Purified calreticulin was identified by its NH(2)-terminal amino acid sequences, by its Ca(2+) binding, and by its reactivity with anti-calreticulin antibodies. The protein contained one disulfide bond between (88)Cys and (120)Cys. CD spectral analysis and Ca(2+)-binding properties of the recombinant protein indicated that it was correctly folded.  相似文献   

8.
The glycoprotein Ole e 1 is a significant aeroallergen from the olive tree (Olea europaea) pollen, with great clinical relevance in the Mediterranean area. To produce a biologically active form of recombinant Ole e 1, heterologous expression in the methylotrophic yeast Pichia pastoris was carried out. A cDNA encoding Ole e 1, fused to a Saccharomyces cerevisiae alpha-mating factor prepropeptide using the pPIC9 vector, was inserted into the yeast genome under the control of the AOX1 promoter. After induction with methanol, the protein secreted into the extracellular medium was purified by ion-exchange and size-exclusion chromatography. The structure of the isolated recombinant Ole e 1 was determined by chemical and spectroscopic techniques, and its immunological properties analysed by blotting and ELISA inhibition with Ole e 1-specific monoclonal antibodies and IgE from sera of allergic patients. The allergen was produced at a yield of 60 mg per litre of culture as a homogeneous glycosylated protein of around 18.5 kDa. Recombinant Ole e 1 appears to be properly folded, as it displays spectroscopic properties (CD and fluorescence) and immunological reactivities (IgG binding to monoclonal antibodies sensitive to denaturation and IgE from sera of allergic patients) indistinguishable from those of the natural protein. This approach gives high-yield production of homogeneous and biologically active allergen, which should be useful for scientific and clinical purposes.  相似文献   

9.
tau-Crystallin is a taxon-restricted crystallin found in eye lenses of reptiles and a few avian species but presumably absent in mammals. The level of tau-crystallin in the lens varies among different species. In the crocodile lens, it is the least abundant crystallin and is present in trace amounts. We present a method for cloning, overexpression, and purification of crocodilian tau-crystallin utilizing a combination of gel filtration and ion-exchange chromatography yielding an extremely purified protein. The protein gets profusely expressed resulting in a fairly high yield and exists as a monomeric entity of 47.5 kDa molecular mass. The recombinant tau-crystallin exists in a properly folded native state as probed by circular dichroism and fluorescence spectroscopy and exhibits enolase activity.  相似文献   

10.
The elastase-specific inhibitor, guamerin, was expressed and secreted into a culture medium using the methylotrophic yeast Pichia pastoris, and the resulting recombinant guamerin was purified from the culture media using a two-step procedure composed of a hydrophobic interaction and reverse-phase chromatography. Up to 90 g/L of dry cell weight, the guamerin-producing recombinant P. pastoris was cultivated and guamerin was secreted into the culture medium at a level of 0.69 g/L. The recombinant guamerin was highly purified (>98%) with a recovery yield of 68%. Analyses of the purified guamerin revealed the same N-terminal amino acid sequence, amino acid composition, and molecular mass as found in the native leech protein. The recombinant guamerin exhibited the tight binding to porcine pancreatic elastase. Furthermore, the recombinant guamerin did not produce a humoral immune response in mice.  相似文献   

11.
A Bacillus subtilis strain was isolated from the intestine of Sebastiscus marmoratus (scorpion fish) that was identified as Bacillus subtilis CH2 by morphological, biochemical, and genetic analyses. The chitosanase of Bacillus subtilis CH2 was best induced by fructose and not induced with chitosan, unlike other chitosanases. The strain was incubated in LB broth, and the chitosanase secreted into the medium was concentrated with ammonium sulfate precipitation and purified by gel permeation chromatography. The molecular mass of the purified chitosanase was detected as 29 kDa. The optimum pH and temperature of the purified chitosanase were 5.5 and 60°C, respectively. The purified chitosanase was continuously thermostable at 40°C. The specific acitivity of the purified chitosanase was 161 units/mg. The N-terminal amino acid sequence was analyzed for future study.  相似文献   

12.
By use of a T7 expression system, large amounts of active Bacillus subtilis RNA polymerase sigma A factor were produced in Escherichia coli cells. This overproduced protein was found in the form of inclusion bodies and constituted 40% of the total cellular protein. Because of the ease of isolation of the inclusion bodies and the acidic properties of sigma A, the protein was purified to more than 99% purity and the yield was about 90 mg/liter of culture. Gel mobility, antigenicity, specificity of promoter recognition, and N-terminal amino acid sequence of the overproduced sigma were found to be the same as those of native sigma A. Partial proteolysis analysis of sigma A protein suggested the presence of a protease-sensitive surface region in the C-terminal part of the sigma A protein. The promoter -10 binding region of sigma A was less sensitive to proteases and was probably involved in a hydrophobic, tightly folded domain of sigma A protein.  相似文献   

13.
5His-tagged human TNFalpha type I receptor (TNFR1) ligand-binding domain was produced in Drosophila cells under control of metallothionein Cu-inducible promoter and purified by Ni-NTA affinity chromatography to homogeneity. TNFR1 gene fragment was cloned by PCR from CD8+ in vitro cultured T-killer normal linage cDNA. In despite of three disulfide bonds, the recombinant protein was correctly folded which was conformed by TNFalpha ligand binding assay in ELISA variant.  相似文献   

14.
Heterologous production of the heterodimeric penicillin G amidase (PAC) from Providencia rettgeri was optimized in Saccharomyces cerevisiae. Several factors, including the effect of different growth and induction conditions, were identified to be critical for the enzyme overproduction and secretion. The PAC yield was significantly increased by more than 500-fold compared to that obtained in the native bacterium, and the recombinant enzyme was almost entirely secreted. Electrophoretic characterization of the secreted rPAC(Pr), which was purified over 20-fold by a combination of hydrophobic interaction and ion-exchange chromatography, demonstrated a microheterogeneity of the recombinant enzyme. The recombinant PAC(Pr) was further characterized in terms of specific activity, pH, and temperature profiles and kinetic parameters. The data presented here suggest that by overexpressing rPAC(Pr) in S.cerevisiae and purifying secreted enzyme from culture medium one can readily obtain a large amount of an alternative source of penicillin amidase with properties comparable to that of todays main industrial source of enzyme.  相似文献   

15.
The GM2-activator protein (GM2AP) belongs to a group of five small, nonenzymatic proteins that are essential cofactors for the degradation of glycosphingolipids in the lysosome. It mediates the interaction between the water-soluble enzyme beta-hexosaminidase A and its membrane-embedded substrate, ganglioside GM2, at the lipid-water interphase. Inherited defects in the gene encoding this glycoprotein cause a fatal neurological storage disorder, the AB variant of GM2 gangliosidosis. With the aim to establish a convenient eukaryotic system that allows the efficient production of functionally folded, glycosylated GM2AP and offers the potential of cost-efficient isotopic labeling for structural studies by NMR spectroscopy, we established the expression of recombinant GM2AP in the methylotrophic yeast Pichia pastoris. For the construction of expression plasmids, either the full cDNA encoding human GM2AP preproprotein was cloned in the expression vector pPIC3.5K, or the cDNA encoding only the mature form of GM2AP was inserted in the vector pPIC9K under control of the alcohol oxidase 1 promoter. Both plasmids led to the successful secretory expression of active, glycosylated GM2AP, which could easily be purified by Ni-NTA chromatography due to the hexahistidine tag introduced at the C-terminus. Remarkably, the expression of this membrane-active protein in P. pastoris was accompanied by two peculiarities which were not encountered in other expression systems for GM2AP: First, a significant fraction of the secreted protein existed in the form of aggregates, and second, considerable amounts of noncovalently bound lipids were associated with the recombinant protein. A three-step purification scheme was therefore devised consisting of Ni-NTA, reversed phase, and gel filtration chromatography, which finally yielded 10-12 mg of purified, monomeric GM2AP per liter of expression supernatant. MALDI- and ESI-TOF mass spectrometry were employed to assess the processing, homogeneity, and glycosylation pattern of the recombinant protein. Surface plasmon resonance spectroscopy allowed the interaction of GM2AP with immobilized liposomes to be studied. A modified version of FM22 minimal medium was then used in the cost-effective (15)N-labeling of GM2AP to assess its amenability for the structural investigation by NMR spectroscopy. Initial (15)N,(1)H-HSQC experiments show a well-folded protein and provide evidence for extensive conformational exchange processes within the molecule.  相似文献   

16.
Mature prion protein (PrP) is a 208-residue polypeptide that contains a single disulfide bond. We report an alternative method to purify recombinant mouse PrP produced in Escherichia coli. Bacterial inclusion bodies were solubilized in a buffer containing 2 M urea at pH 12.5. The solubilized protein was rapidly purified on a nickel affinity column without a chaotrope gradient, followed by ion-exchange chromatography. The yield and purity of PrP produced by this alternative approach was similar to that obtained using a conventional solubilization and on-column refolding protocol. Recombinant PrP produced using the non-reducing purification protocol is properly folded, as determined by circular dichroism, and a competent substrate for amyloid fibril formation, as determined by Thoflavin-T dye binding assays. In summary, this report describes a rapid method for producing properly folded recombinant PrP without reducing agents or a chaotrope gradient.  相似文献   

17.
Wasp venom allergy is the most common insect venom allergy in Europe. It is manifested by large local reaction or anaphylactic shock occurring after a wasp sting. The allergy can be treated by specific immunotherapy with whole venom extracts. Wasp venom is difficult and costly to obtain and is a subject to composition variation, therefore it can be advantageous to substitute it with a cocktail of recombinant allergens. One of the major venom allergens is phospholipase A1, which so far has been expressed in Escherichia coli and in insect cells. Our aim was to produce the protein in secreted form in yeast Pichia pastoris, which can give high yields of correctly folded protein on defined minimal medium and secretes relatively few native proteins simplifying purification.Residual amounts of enzymatically active phospholipase A1 could be expressed, but the venom protein had a deleterious effect on growth of the yeast cells. To overcome the problem we introduced three different point mutations at the critical points of the active site, where serine137, aspartate165 or histidine229 were replaced by alanine (S137A, D165A and H229A). All the three mutated forms could be expressed in P. pastoris. The H229A mutant did not have any detectable phospholipase A1 activity and was secreted at the level of several mg/L in shake flask culture. The protein was purified by nickel-affinity chromatography and its identity was confirmed by MALDI-TOF mass spectrometry. The protein could bind IgE antibodies from wasp venom allergic patients and could inhibit the binding of wasp venom to IgE antibodies specific for phospholipase A1 as shown by Enzyme Allergo-Sorbent Test (EAST). Moreover, the recombinant protein was allergenic in a biological assay as demonstrated by its capability to induce histamine release of wasp venom-sensitive basophils.The recombinant phospholipase A1 presents a good candidate for wasp venom immunotherapy.  相似文献   

18.
Erythropoietin was purified to homogeneity from the culture medium of a baby hamster kidney cell line stably transfected with a human erythropoietin gene. A three-step procedure was used, which included affinity chromatography, ion-exchange chromatography, and reverse-phase chromatography. Purity of the protein was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino-terminal sequence analysis. Overall recovery was 35%. The biological activity of purified recombinant erythropoietin was similar to that of the native hormone in vitro. The purified recombinant hormone contained N-linked carbohydrate at residues 24, 38, and 83, and and O-linked carbohydrate at residue 126.  相似文献   

19.
P30P2MSP1(19) is a recombinant subunit vaccine derived from merozoite surface protein 1 (MSP1) of Plasmodium falciparum, the causative agent of malaria. P30P2MSP1(19) consists of two universal T-cell epitopes fused to the most C-terminal 19-kDa portion of MSP1, and this protein has previously shown promising potential as a vaccine for malaria. However, previous attempts at producing this molecule in Saccharomyces cerevisiae resulted in the production of a truncated form of the molecule missing most of the universal T-cell epitopes. Here, we report the production of full-length P30P2MSP1(19) in Pichia pastoris. As salt precipitation is a common problem during P. pastoris high-density fermentation, we utilized an alternative low-salt, fully defined medium that did not reduce growth rates or biomass yields to avoid precipitation. A total of 500 mg/L of secreted purified protein was produced in high cell density fermentation and the protein was purified in one step utilizing nickel-chelate chromatography. P30P2MSP1(19) produced in Pichia was reactive with monoclonal antibodies that recognize only conformational epitopes on correctly folded MSP1. Rabbits immunized with this molecule generated higher and more uniform antibody titers than rabbits immunized with the protein produced in Saccharomyces. P30P2MSP1(19) produced in Pichia may prove to be a more efficacious vaccine than that produced in Saccharomyces and Pichia would provide a system for the cost-effective production of such a vaccine.  相似文献   

20.
Exceptional overproduction of a functional human membrane protein   总被引:1,自引:0,他引:1  
Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号