首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The Green function technique is used to study the open hydrogen bond probability of poly(dT-dA)·poly(dT-dA) when an effective enzyme is attached to the helix. The DNA interstrand hydrogen bond mean motion and probability of fluctuating to an open state depends on the internal vibrational frequency of the enzyme. An enzyme with internal frequency of 80 cm ?1 reduces hydrogen bond motion and the resulting probability of hydrogen bond fluctuational opening. An enzyme with internal frequency of 72 cm ?1 increases hydrogen bond motion and the probability of hydrogen bond breaking.  相似文献   

2.
3.
A normal-mode and statistical mechanical calculation was carried out to determine the vibrational normal modes, contribution of internal fluctuations to the free energy, and hydrogen bond disruption of DNA triplex poly(dA).2poly(dT). The calculation was performed on both the x-ray fiber diffraction model with a N-type sugar conformation, and a newly proposed model with a S-type sugar conformation. Our calculated normal modes for the S-type structure are in better agreement with observed IR spectra for samples in D2O solution. We also find that the contribution of internal fluctuations to free energy, premelting hydrogen bond disruption probability, and hydrogen bond melting temperatures for the Hoogsteen and Watson-Crick hydrogen bonds all show that the S-type structure is dynamically more stable than the N-type structure in a nominal solution environment. Therefore our calculation supports experimental findings that the triplex d(T)n.d(A)nd(T)n most likely adopts a S-type sugar conformation in solution or at high humidity. Our calculations, however, do not preclude the possibility of an N-type conformation at lower humidities.  相似文献   

4.
Resonance Raman investigations on compound II of native, diacetyldeuteroheme-, and manganese-substituted horseradish peroxidase (isozyme C) revealed that the metal-oxygen linkage in the compound differed from one another in its bond strength and/or structure. Fe(IV) = O stretching frequency for compound II of native enzyme was pH sensitive, giving the Raman line at 772 and 789 cm-1 at pH 7 and 10, respectively. The results confirmed the presence of a hydrogen bond between the oxo-ligand and a nearby amino acid residue (Sitter, A. J., Reczek, C. M., and Terner, J. (1985) J. Biol. Chem. 260, 7515-7522). The Fe(IV) = O stretch for compound II of diacetylheme-enzyme was located at 781 cm-1 at pH 7 which was 9 cm-1 higher than that of native enzyme compound II. At pH 10, however, the Fe(IV) = O stretch was found at 790 cm-1, essentially the same frequency as that of native enzyme compound II. The pK value for the pH transition, 8.5, was also the same as that of native compound II. Unlike in native enzyme, D2O-H2O exchange did not cause a shift of the Fe(IV) = O frequency of diacetylheme-enzyme. Thus, the metal-oxygen bond at pH 7 was stronger in diacetylheme-enzyme due to a weaker hydrogen bonding to the oxo-ligand, while the Fe(IV) = O bond strength became essentially the same between both enzymes at alkaline pH upon disruption of the hydrogen bond. A much lower reactivity of the diacetylheme-enzyme compound II was accounted to be due to the weaker hydrogen bond. Compound II of manganese-substituted enzyme exhibited Mn(IV)-oxygen stretch about 630 cm-1, which was pH insensitive but down-shifted by 18 cm-1 upon the D2O-H2O exchange. The finding indicates that its structure is in Mn(IV)-OH, where the proton is exchangeable with a water proton. These results establish that the structure of native enzyme compound II is Fe(IV) = O but not Fe(IV)-OH.  相似文献   

5.
We have previously described poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors based on a substituted benzyl-phthalazinone scaffold. As an alternative chemical template, a novel series of alkoxybenzamides were developed with restricted conformation through intramolecular hydrogen bond formation; the compounds exhibit low nM enzyme and cellular activity as PARP-1 inhibitors.  相似文献   

6.
A Green's function approach is used in constructing a dynamic model of a semi-infinite length of the DNA homopolymer B poly(d) . poly(d). Considerable attention is focused on the hydrogen bond stretching close to the terminus. A melting (or breathing) coordinate (M) is defined as an average over the three linking hydrogen bond stretches in a unit cell. The thermal mean squared amplitude of (M) is enhanced at the chain end compared with the interior. Spectral branches at 69, 80 and 105 cm-1, as well as a local mode at 75 cm-1, are primary contributors to the enhancement. We suggest that this fact can affect the thermal melting of a DNA double helical homopolymer, enhancing the tendency to start from an end (if one is available). We show how certain infinite chain modes with small (M) amplitude can turn into breathing modes near the terminus, and suggest that the same phenomenon may occur near other specific base-pair sequences. There is also considerable attention paid to the low microwave region from approximately 0 to 1.75 cm-1. The thermally activated modes in this frequency region contribute approximately (0.02 A)2 to [M2(0)] at 40 K, approximately two orders of magnitude greater than for [M2(infinity)]. Most important however, is the existence of narrow resonant modes in this frequency region. Particularly pronounced resonances near 0.03 cm-1 and 0.08 cm-1 (approximately 0.9 and 2.4 GHz) amplify M2(0) at the terminus by about for orders of magnitude over the infinite chain value M2(infinity).  相似文献   

7.
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

8.
We employ a mean field, modified, self-consistent phonon theory to evaluate the single base-pair opening rate and the probability of a base pair in the amino proton exchangeable state for the homopolymer poly(dA).poly(dT) at temperatures below the helix-coil transition region. Our calculated premelting single base-pair opening probabilities are in general agreement with several available experimental estimates from imino proton exchange and formaldehyde-induced DNA melting measurements. These calculated opening probabilities, however, are in disagreement with the prediction of the helix-coil transition theory. Possible reasons for the differences are discussed, especially the possible different definition of a meaningful open state in the premelting region. The premelting open state of the modified self-consistent phonon approximation theory seems to be appropriate to describe a solvent-accessible open configuration that is sufficient to facilitate important chemical reactions such as imino proton exchange and formaldehyde reaction with the bases. This can be compared with the completely unstacked open state of the helix-coil transition theory originally defined in the helix-coil transition region. We propose that the amino proton exchangeable state is different from the open state associated with melting and only involves the breaking of the amino interbase H bond. The agreement between the calculated and experimentally estimated probability of a base pair in the amino proton exchangeable state seems to support this hypothesis.  相似文献   

9.
The synthesis and characterization of poly(1-methylinosinic acid) are described. Laser Raman spectra of poly (mII) were obtained as a function of temperature in D2O solution. Thermal melting profiles derived from the intensity variations of the 712, 795, 814, 986, 1333, 1509, 1550 and 1680 cm-1 bands indicate a cooperative melting temperature of 9 +/- 1 degree C. The low temperature form of poly(mII) exhibits a carbonyl frequency at 1710 cm-I which is decreased to 1680 cm-I upon melting. The Raman hypochromism in the bands reported are equal to or much larger than any reported for other nucleic acids. The data are consistent with the low temperature form of poly(mII) being an ordered single stranded unit with a high degree of basestacking. The melting profiles obtained from the uv and cd spectra are consistent with and support the Raman data. This single stranded RNA exhibits an uncharacteristic behavior in that it melts cooperatively.  相似文献   

10.
The calculated phonon spectrum of Z-form poly(dG-dC).poly(dG-dC) between 400 and 1600 cm-1 is reported. Comparison with the available data shows the very good agreement between theory and experiment. The eigenvector displacement is used to assign the characteristics of some of the important modes.  相似文献   

11.
Spectroscopic evidence is presented for the lack of intramolecular hydrogen bonding in a simple peptide derivative of 5,5-dimethylthiazolidine-4-carboxylic acid (Dtc). The infrared spectrum of Boc-Pro-Ile-OMe 1 in nonpolar solvents displays two N-H stretching bands at 3419 and 3330 cm-1 in CCl4 and one at 3417 and 3328 cm-1 in CHCl3. The low frequency band at 3328-3330 cm-1 may be assigned to conformations with an intramolecular hydrogen bond between the Ile N-H and Boc C = O. The band at 3417-3419 cm-1 is the normal Ile N-H stretch. In the polar solvent CH3CN only one NH stretching band at 3365 cm-1 is observed. The IR spectrum of Boc-Dtc-Ile-OMe 2, on the other hand, displays one N-H stretching band at 3423 cm-1 in CCl4 and one at 3418 cm-1 in CHCl3. The IR spectrum of 2 does not display the N-H stretching band that would arise from intramolecular hydrogen bonding between the Boc C = O and Ile N-H. The lack of intramolecular hydrogen bonding for Boc-Dtc-Ile-OMe 2 was evident also in the NMR spectra in nonpolar solvents. The 1H-NMR spectrum of the Pro dipeptide 1 in 50% CDCl3/C6D6 at 20 degrees displayed two Ile-NH signals at 6.58 and 7.74 ppm. The latter signal corresponds to the intramolecularly hydrogen bonded Ile-NH in the trans-Boc isomer of 1 (60% of the total population), while the former signal corresponds to the nonhydrogen bonded Ile-NH in the cis-Boc isomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
C A Grygon  T G Spiro 《Biochemistry》1989,28(10):4397-4402
Raman spectra are reported for distamycin, excited at 320 nm, in resonance with the first strong absorption band of the chromophore. Qualitative band assignments to pyrrole ring and amide modes are made on the basis of frequency shifts observed in D2O. When distamycin is dissolved in dimethyl sulfoxide or dimethylformamide, large (30 cm-1) upshifts are seen for the band assigned to amide I, while amides II and III shift down appreciably. Similar but smaller shifts are seen when distamycin is bound to poly(dA-dT) and poly(dA)-poly(dT). Examination of literature data for N-methylacetamide in various solvents shows that the amide I frequencies correlate well with solvent acceptor number but poorly with solvent donor number. This behavior implies that acceptor interactions with the C = O group are more important than donor interactions with the N-H group in polarizing the amide bond and stabilizing the zwitterionic resonance form. The resonance Raman spectra therefore imply that the distamycin C = O groups, despite being exposed to solvent, are less strongly H-bonded in the polynucleotide complexes than in aqueous distamycin, perhaps because of orienting influences of the nearby backbone phosphate groups. In this respect, the poly(dA-dT) and poly(dA)-poly(dT) complexes are the same, showing the same RR frequencies. Resonance Raman spectra were also obtained at 200-nm excitation, where modes of the DNA residues are enhanced. The spectra were essentially the same with and without distamycin, except for a perceptable narrowing of the adenine modes of poly(dA-dT), suggesting a reduction in conformational flexibility of the polymer upon drug binding.  相似文献   

13.
An extracellular poly(3-hydroxybutyrate) (PHB) depolymerase has been isolated from Penicillium funiculosum cultural medium by a single hydrophobic column chromatography. The enzyme is a glycoprotein composed of a single polypeptide chain with a molecular mass of about 37,000 Da as analyzed by denatured sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by native gel filtration on Sephadex G-100. Its optimum activity occurs at pH 6.0. It has an isoelectric point of 5.8 and has a Km for PHB (average molecular weight = 45,000 Da) of 0.17 mg/ml. Various nonionic detergents competitively inhibit the enzyme with Ki values of 0.56 and 0.014% for Tween 80 and Triton X-100, respectively. The enzyme is extremely sensitive to diisopropyl fluorophosphate, mercuric ion, and dithiothreitol (DTT). However, sulfhydryl reagents have little or no effect on its activity. The inactivation by mercuric ion and DTT is reversible by mercaptoethanol and hydrogen peroxide, respectively. These data suggest that the enzyme may be a serine esterase and may contain an important disulfide bond. The enzyme is also inactivated by diazoacetyl and epoxide compounds at low pH, which can be prevented by PHB, indicating the presence of a critical carboxyl group at the active site. These characteristics of the enzyme are compared to other extracellular polymerases isolated from bacterial culture media.  相似文献   

14.
It was shown by circular dichroism that the B-Z transition of poly(dG-dC).poly(dG-dC) in high NaCl concentrations occurred more rapidly in the presence of formaldehyde and Tris. The product of formaldehyde and glycine interaction induces changes in the poly(dG-dC).poly(dG-dC) CD spectral characteristics of a 'B-like' conformation. It is supposed that the B-Z transition occurs without large-scale hydrogen bond breakage.  相似文献   

15.
H H Klump  E Schmid    M Wosgien 《Nucleic acids research》1993,21(10):2343-2348
The conformational change for the alternating purine-pyrimidine polydeoxyribonucleotides i.e. poly d(A-T), poly d(G-C), and poly d(A-C) poly d(G-T) from a right-handed conformation at room temperature to the left-handed Z-DNA like double helix at elevated temperatures has been studied by UV spectroscopy, Raman spectroscopy, and by adiabatic differential scanning microcalorimetry (DSC) in the presence of Na+ and Mg2+ or Ni2+ respectively as counterions. The differential UV spectra reveal through a hyperchromic shift at around 280nm and a hypochromic shift at 260nm that a conformational change to the left-handed conformation occurs. The Raman spectra clearly show characteristic changes, a drastic decrease of the band at 680cm-1 and the appearance of a new band at 628cm-1, due to the change of the purine bases to the syn conformation upon inversion of the helix-handedness. The course of the transition as function of temperature can be followed quantitatively by plotting the change in the excess heat capacity vs. temperature. The transition enthalpy delta H for the B- to Z-DNA transition per mole base pairs (mbp) amounts to 2.0 +/- 0.2kcal for poly d(G-C), to 4.0 +/- 0.4kcal for poly d(A-T), and to 3.1 +/- 0.3kcal for poly d(A-C) poly d(G-T). The enthalpy change due to the Z-DNA to coil transitions (per mole base pairs) amounts to 11kcal for poly d(G-C), 10.5kcal for poly d(A-T) and 11.3kcal for poly d(A-C) poly d(G-T).  相似文献   

16.
Initiation of poly(ADP-ribosyl) histone synthesis was achieved in vitro using an apparently homogeneous preparation of poly(ADP-ribose) synthetase. When poly(ADP-ribose) was synthesized in the presence of DNA and increase amounts of histone H1, increasing portions (up to about 55%) of the product were found associated with the histone, judging from solubility in 5% HClO4 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Most of the polymers were directly attached to the histone protein and not produced by elongation from pre-existing ADP-ribose; the cohesive end of poly(ADP-ribose), isolated as ribose 5-phosphate with snake venom phosphodiesterase digestion, was labeled almost quantitatively with [ribose (NMN)-14C]NAD. The poly(ADP-ribose) . histone linkage was labile in mild alkali and neutral NH2OH, suggesting that the same bond, probably ester, was formed in this system as in crude chromatin or isolated nuclei. Elongation of a histone-bound monomer into a polymer by this enzyme was previously demonstrated (Ueda, K., Kawaichi, M., Okayama, H., and Hayaishi, O. (1979) J. Biol. Chem. 254, 679-687), but initiation of ADP-ribose chains on histone has never been shown with a purified enzyme. This appeared to be due to the low concentrations of histone so far used. These findings indicated that a single enzyme catalyzes two different types of reaction, i.e. an attachment of ADP-ribose to histone and its elongation into a polymer.  相似文献   

17.
The isolated nuclei of rat pancreas contain an enzyme system that will incorporate 3H-labeled NAD into an acid-insoluble product, which is shown to be poly(ADP-ribose). The enzyme has an optimum pH of 7.8 and the optimum temperature is between 20 and 30 degrees C. Optimum Mg2+ concentration is 8 mM and dithiothreitol also stimulates the enzyme at a concentration of 8 mM. Under standard conditions, the Km value for the reaction is 0.25 mM and an inhibition by the substrate is observed at high substrate concentrations. It has also been found that only one basic nuclear protein, that is, histone H1, is modified by the synthetase. An average chain length of 5.0 is found in the nuclei and of 4.5 on histone H1. Radioautographic studies show that poly(ADP-ribose) is closely associated with chromatin.  相似文献   

18.
Poly(dA-dT).poly(dA-dT) structures in aqueous solutions with high NaCl concentrations and in the presence of Ni2+ ions have been studied with resonance Raman spectroscopy (RRS). In low water activity the effects of added 95 mM NiCl2 in solution stabilize the syn geometry of the purines and reorganize the water distribution via local interactions of Ni-water charged complexes with the adenine N7 position. It is shown that RRS provides good marker bands for a left-handed helix: i) a purine ring breathing mode around 630 cm-1 coupled to the deoxyribose vibration in the syn geometry, ii) a 1300-1340 cm-1 region characterizing local chemical interactions of the Ni2+ ions with the adenine N7 position, iii) lines at about 1483- and 1582 cm-1 correlated to the anti/syn reorientation of the adenine residues on B-Z structure transition, iv) marker bands of the thymidine carbonyl group couplings at 1680- and 1733 cm-1 due to the disposition of the thymidine residues in the Z helix specific geometry. Hence poly(dA-dT).poly(dA-dT) can adopt a Z form in solution. The Z form observed in alternate purine-pyrimidine sequences does not require G-C base pairs.  相似文献   

19.
The frequency-dependent vibrational fluctuation of the hydrogen bonds around a nucleation defect for the strand separation melting of a DNA polymer poly(dG)-poly(dC) is studied using a modified self-consistent phonon theory. There are two critical frequency bands around the defect at 340 K which is near the temperature at which the hydrogen bonds in neighboring cells melt. The first band is between 60 cm-1 and 120 cm-1 which is essential for the melting proceeding in +z direction(3'----5' in the G backbone). The second is the band under 20 cm-1 which is important for the melting proceeding in -z direction.  相似文献   

20.
The bacteriophage T4 helix destabilizing protein (hdp) gp32 and its complexes with poly(rA) and poly(dA) were studied with ultra-violet resonant Raman spectroscopy. The UV-resonant Raman (UV-RR) spectrum of the complex of gp5, the coat protein of bacteriophage M13, with poly(dA) was also measured and is compared with the spectrum of the gp 32/poly(dA) complex. The excitation wavelength was 245.1 nm. This is on the far UV-side of the first absorption bands of adenine and near a "window" in the protein absorption spectrum. The overlap of fluorescence due to chromophores present in the protein and resonance Raman scattering was prevented by this choice of wavelength. The spectra of the protein/polynucleotide complexes are compared with the native nucleotide spectra measured at varying temperatures. The hyperchromicity which is expected when a nucleotide changes from a stacked to an unstacked conformation was not observed for poly(rA), neither upon temperature increase nor on protein binding. In both cases poly(dA) revealed a clear hyperchromicity. This different behavior of poly(rA) and poly(dA) is probably a consequence of their different conformations. The contributions of the proteins to the spectra is weak except for two bands, at 1550 and 1610 cm-1 due to tryptophan (in case of gp32) and one band near 1610 cm-1 due to tyrosine and phenylalanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号