首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dehalococcoides ethenogenes is the only known cultivated organism capable of complete dehalogenation of tetrachloroethene (PCE) to ethene. The prevalence of Dehalococcoides species in the environment and their association with complete dehalogenation of chloroethenes suggest that they play an important role in natural attenuation of chloroethenes and are promising candidates for engineered bioremediation of these contaminants. Both natural attenuation and bioremediation require reliable and sensitive methods to monitor the presence, distribution, and fate of the organisms of interest. Here we report the development of 16S rRNA-targeted oligonucleotide probes for Dehalococcoides species. The two designed probes together encompass 28 sequences of 16S rRNA genes retrieved from the public database. Except D. ethenogenes and CBDB1, all the others are environmental clones obtained from sites contaminated with chlorinated ethenes. They are all closely related and form a unique cluster of Dehalococcoides species. In situ hybridization of probe Dhe1259t with D. ethenogenes strain 195 and two enrichment cultures demonstrated the applicability of the probe to monitoring the abundance of active Dehalococcoides species in these enrichment samples.  相似文献   

2.
用末端转移酶催化生物素核苷酸底物(Biotin-ll-dUTP)共价连接在合成的寡核苷酸3’羟基末端,从而合成了两种寡核苷酸探针(β~T_(41-42)及β~A_(41-42))。用它们分别与克隆化扩增的正常和突变的β—珠蛋白基因片段杂变。结果表明该探针都具有与~(32)P探针相似的特异性,其杂交的灵敏度为2—3pg(特异序列)。进而将探测HbS基因的正常和异常两种寡核苷酸19聚体(β~A_6和β~S_6)用~(32)P和生物素分别标记;将HbS杂合子病人的白细胞DNA经聚合酶链反应(PCR)法扩增,并以含正常β—珠蛋白基因的DNA片段作对照,与两种探针分别进行斑点杂交。所得结果完全一致;Hbs杂合子DNA对正常和异常探针都显出杂交信号,而正常DNA只与β~A探针显杂交信号。  相似文献   

3.
DNA sequence information for the small-subunit rRNA gene (16S rDNA) obtained from cyanobacterial cultures was used to investigate the presence of cyanobacteria and their abundance in natural habitats. Eight planktonic communities developing in lakes characterized by relatively low algal biomass (mesotrophic) and in lakes with correspondingly high biomass (eutrophic) were selected for the study. The organismal compositions of the water samples were analyzed genetically, using multiplex sequence-specific labeling of oligonucleotide probes targeted to 16S rDNA and subsequent hybridization of the labeled probes to their respective complements spotted onto a solid support (DNA array). Ten probes were established to determine the relative abundances of the discernible cyanobacteria encountered in the selected lakes. The probes were generally specific for their targets, as determined through analyses of clone cultures. Reproducible abundance profiles were established for the lakes investigated in the subsequent analyses of natural cyanobacterial communities. The results from the genetic analyses were then compared with information obtained from standard hydrobiological and hydrochemical analyses. Qualitatively, there were relatively good correlations among the groups of organisms (Nostoc, Microcystis, and Planktothrix species) found in the different lakes. The levels of correlation were lower for the quantitative data. This may, however, be due to differences in sample processing technique. The conclusions from these comparisons are that the genetic abundance profiles may provide a foundation for separating and quantifying genetically distinct groups of cyanobacteria in their natural habitats.  相似文献   

4.
A total of 46 brewery and 15 ATCC Pediococcus isolates were ribotyped using a Qualicon RiboPrinter. Of these, 41 isolates were identified as Pediococcus damnosus using EcoRI digestion. Three ATCC reference strains had patterns similar to each other and matched 17 of the brewery isolates. Six other brewing isolates were similar to ATCC 25249. The other 18 P. damnosus brewery isolates had unique patterns. Of the remaining brewing isolates, one was identified as P. parvulus, two were identified as P. acidilactici, and two were identified as unique Pediococcus species. The use of alternate restriction endonucleases indicated that PstI and PvuII could further differentiate some strains having identical EcoRI profiles. An acid-resistant P. damnosus isolate could be distinguished from non-acid-resistant varieties of the same species using PstI instead of EcoRI. 16S rRNA gene sequence analysis was compared to riboprinting for identifying pediococci. The complete 16S rRNA gene was PCR amplified and sequenced from seven brewery isolates and three ATCC references with distinctive riboprint patterns. The 16S rRNA gene sequences from six different brewery P. damnosus isolates were homologous with a high degree of similarity to the GenBank reference strain but were identical to each other and one ATCC strain with the exception of 1 bp in one strain. A slime-producing, beer spoilage isolate had 16S rRNA gene sequence homology to the P. acidilactici reference strain, in agreement with the riboprint data. Although 16S rRNA gene sequencing correctly identified the genus and species of the test Pediococcus isolates, riboprinting proved to be a better method for subspecies differentiation.  相似文献   

5.
Traditional methods for the enumeration of airborne fungi are slow, tedious, and rather imprecise. In this study, the possibility of using flow cytometry (FCM) for the assessment of exposure to the fungus aerosol was evaluated. Epifluorescence microscopy direct counting was adopted as the standard for comparison. Setting up of the method was achieved with pure suspensions of Aspergillus fumigatus and Penicillium brevicompactum conidia at different concentrations, and then analyses were extended to field samples collected by an impinger device. Detection and quantification of airborne fungi by FCM was obtained combining light scatter and propidium iodide red fluorescence parameters. Since inorganic debris are unstainable with propidium iodide, the biotic component could be recognized, whereas the preanalysis of pure conidia suspensions of some species allowed us to select the area corresponding to the expected fungal population. A close agreement between FCM and epifluorescence microscopy counts was found. Moreover, data processing showed that FCM can be considered more precise and reliable at any of the tested concentrations.  相似文献   

6.
7.
The usability of the DNA microarray format for the specific detection of bacteria based on their 16S rRNA genes was systematically evaluated with a model system composed of six environmental strains and 20 oligonucleotide probes. Parameters such as secondary structures of the target molecules and steric hindrance were investigated to better understand the mechanisms underlying a microarray hybridization reaction, with focus on their influence on the specificity of hybridization. With adequate hybridization conditions, false-positive signals could be almost completely prevented, resulting in clear data interpretation. Among 199 potential nonspecific hybridization events, only 1 false-positive signal was observed, whereas false-negative results were more common (17 of 41). Subsequent parameter analysis revealed that this was mainly an effect of reduced accessibility of probe binding sites caused by the secondary structures of the target molecules. False-negative results could be prevented and the overall signal intensities could be adjusted by introducing a new optimization strategy called directed application of capture oligonucleotides. The small number of false-positive signals in our data set is discussed, and a general optimization approach is suggested. Our results show that, compared to standard hybridization formats such as fluorescence in situ hybridization, a large number of oligonucleotide probes with different characteristics can be applied in parallel in a highly specific way without extensive experimental effort.  相似文献   

8.
Based on the analysis of 16S rRNA nucleotide sequences, oligonucleotide probes were designed for the detection of representatives of the genus Thermoanaerobacter. To increase the specificity of detection, the genus Thermoanaerobacter was divided into three groups. The probe Tab 827 (5"-GCTTCCGCDYCCCACACCTA-3") detected all known representatives of the genus Thermoanaerobacter; the probe Tab_1 844 (5"-TTAACTACGGCACGRAATGCTTC-3") was specific for the first group of species of the genus (T. wiegelii, T. siderophilus, T. sulfurophilus, T. brockii, T. kivui, T. ethanolicus, T. acetoethylicus, and T. thermohydrosulfuricus); the probe Tab_2 424 (5"-CACTAMYGGGGTTTACAACC-3") targeted the second group (T. thermocopriae, T. mathranii, and T. italicus); and the probe Tab_3 184 (5"-TCCTCCATCAGGATGCCCTA-3") was specific for the third group (T. tengcongensis, T. yonseiensis, T. subterraneus, and Carboxydibrachium pacificum, an organism related to the genus Thermoanaerobacter according to its 16S rRNA sequence). The oligonucleotide probes were labeled with Dig-11-dUTP. Hybridization with the probes showed the affiliation with Thermoanaerobacter of several pure cultures that were morphologically similar to representatives of this genus but possessed metabolic features unusual for it (capacity for agarose hydrolysis, anaerobic oxidation of CO, growth at low pH values) or were isolated from habitats previously unknown for Thermoanaerobacter (deep-sea hydrothermal vents).  相似文献   

9.
Target site inaccessibility represents a significant problem for fluorescence in situ hybridization (FISH) of 16S rRNA with oligonucleotide probes. Here, unlabeled oligonucleotides (helpers) that bind adjacent to the probe target site were evaluated for their potential to increase weak probe hybridization signals in Escherichia coli DSM 30083T. The use of helpers enhanced the fluorescence signal of all six probes examined at least fourfold. In one case, the signal of probe Eco474 was increased 25-fold with the use of a single helper probe, H440-2. In another case, four unlabeled helpers raised the FISH signal of a formerly weak probe, Eco585, to the level of the brightest monolabeled oligonucleotide probes available for E. coli. The temperature of dissociation and the mismatch discrimination of probes were not significantly influenced by the addition of helpers. Therefore, using helpers should not cause labeling of additional nontarget organisms at a defined stringency of hybridization. However, the helper action is based on sequence-specific binding, and there is thus a potential for narrowing the target group which must be considered when designing helpers. We conclude that helpers can open inaccessible rRNA regions for FISH with oligonucleotide probes and will thereby further improve the applicability of this technique for in situ identification of microorganisms.  相似文献   

10.
A two-probe proximal chaperone detection system consisting of a species-specific capture probe for the microarray and a labeled, proximal chaperone probe for detection was recently described for direct detection of intact rRNAs from environmental samples on oligonucleotide arrays. In this study, we investigated the physical spacing and nucleotide mismatch tolerance between capture and proximal chaperone detector probes that are required to achieve species-specific 16S rRNA detection for the dissimilatory metal and sulfate reducer 16S rRNAs. Microarray specificity was deduced by analyzing signal intensities across replicate microarrays with a statistical analysis-of-variance model that accommodates well-to-well and slide-to-slide variations in microarray signal intensity. Chaperone detector probes located in immediate proximity to the capture probe resulted in detectable, nonspecific binding of nontarget rRNA, presumably due to base-stacking effects. Species-specific rRNA detection was achieved by using a 22-nt capture probe and a 15-nt detector probe separated by 10 to 14 nt along the primary sequence. Chaperone detector probes with up to three mismatched nucleotides still resulted in species-specific capture of 16S rRNAs. There was no obvious relationship between position or number of mismatches and within- or between-genus hybridization specificity. From these results, we conclude that relieving secondary structure is of principal concern for the successful capture and detection of 16S rRNAs on planar surfaces but that the sequence of the capture probe is more important than relieving secondary structure for achieving specific hybridization.  相似文献   

11.
A rapid polymerase chain reaction (PCR)-based procedure was developed for the detection of Pseudomonas avellanae , the causal agent of hazelnut ( Corylus avellana ) decline in northern Greece and central Italy. The partial sequence of the 16S rRNA gene of P. avellanae strain PD 2390, isolated in central Italy, was compared with the sequence coding for the same gene of P. syringae pv. syringae type-strain LMG 1247t1. Primers PAV 1 and PAV 22 were chosen, and after the PCR, an amplification product of 762 base pairs was specifically produced only by 40 strains of P. avellanae isolated from northern Greece and central Italy. No other bacterial species among those tested showed an amplification product under optimized PCR conditions. The adding of 4% BLOTTO (10% skim milk powder and 0.2% NaN3) in the PCR mixture proved essential in order to avoid interference of hazelnut extracts during the amplification. The procedure proved more effective than repetitive PCR with ERIC primer sets in diagnosing apparently healthy hazelnut trees as infected. This technique could be of great help for screening the hazelnut propagative material as well as for monitoring the wild C. avellana trees growing in the woods near the infected hazelnut orchards.  相似文献   

12.
Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 106 cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 104 type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 106 type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (±0.2) × 106 cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.  相似文献   

13.
对159名中国辽宁汉族个体的基因组DNA进行分析,共检出42种等位基因,其中以DRB1*09012(12.8%)、*0701(10.7%)、*1501(10.4%) 最为常见,其次为DRB1*1201(7.9%)、*1202(7.5%)、*1101(6.6%)、*0301(5.0%)。并发现辽宁汉族人DRB1等位基因频率与白种人间存在明显差异,揭示不同人种有其自己的主要等位基因。同时对本技术在HLA-DRB1分型应用中的优点进行了讨论。 Abstract HLA-DRB1 alleles of 159 Chinese donors from Liaoning Han population were determined by using a set of 23 sequence specific oligonucleotide probes directed to various DRB1 alleles. The samples were first amplified and divided into 8 groups by allele/group specific primers. The SSOs enable us to identify 58 different DRB1subtypes. 42 alleles were detected in the study of this population. Among them, the DRB1*09012(12.8%), *0701(10.7%), *1501(10.4%), *1201(7.9%), *1202(7.5%), *1101(6.6%), *0301(5.0%) are the most frequent. The significant difference was found in Chinese northern Han population by comparing the gene frequencies in Caucasoid samples, suggesting that there were principal DRB1 alleles in different races.  相似文献   

14.
刘利民  梁健  宋芳吉  贾静涛 《遗传》1999,21(3):1-24
对159名中国辽宁汉族个体的基因组DNA进行分析,共检出42种等位基因,其中以DRB109012(12.8%)、0701(10.7%)、1501(10.4%)最为常见,其次为DRB11201(79%)、1202(75%)、1101(66%)、0301(5.0%)。并发现辽宁汉族人DRB1等位基因频率与白种人间存在明显差异,揭示不同人种有其自己的主要等位基因。同时对本技术在HLA-DRB1分型应用中的优点进行了讨论  相似文献   

15.
鸡球虫18S rRNA基因序列的测定与分析   总被引:1,自引:0,他引:1  
为了利用18S rRNA基因进行鸡球虫系统进化分析,对巨型艾美耳球虫(Eimeria maxima)、柔嫩艾美耳球虫(E.tenella)、堆形艾美耳球虫(E.acervulina)3种共8个不同来源的虫株,分别提取总DNA进行18S rRNA基因的扩增和测序;将得到的序列登录GenBank进行同源性和趋异性分析,并结合GenBank中其它原虫的18S rRNA基因序列构建进化树.结果显示扩增获得8株鸡球虫18S rRNA基因长度为1746~1756 bp,序列比对显示同种不同株间的同源性大于不同种间的同源性,其中3株E.maxima株间同源性在98.7%~99.3%之间,4株E.tenella株间同源性在99.7%~99.9%之间;不同种间同源性为96.5%~98.1%,其中E.maxima与E.tenclla的遗传距离最大,为0.038;E.maxima与E.acervulina的遗传距离最小,为0.021.顶复器门9个不同属所构建的进化树结果显示,E.imeria和等孢属(Isospora)聚为一支,说明亲缘关系比较近.与GertBank中其它5株不同鸡球虫的18S rRNA基因共同构建的进化树显示,3株E.maxima聚为一支,与E.brunetti、E.mitis、E.mivati、E.praecox和E.acervulina聚为一大分支;4株E.tenella与1株E.necatrix共同形成一个分支,说明E.tenella与E.necattix的亲缘关系最近.本研究证实了在鸡球虫系统进化研究中,18S rRNA基因不仅可以区分不同种,而且有可能成为区分同种不同株的理想靶基因.  相似文献   

16.
At Iron Mountain, CA, there is an extreme occurrence of acid mine drainage (AMD). This is a result of past mining activity that has exposed a sulfide ore body to weathering and microbial activity. This study presents seven new oligonucleotide probes for the detection of microorganisms at this AMD site by fluorescent in situ hybridization. In the design of these probes we have accounted for a large body of 16S rRNA sequence data recently compiled by us. This was obtained by PCR and cloning directly from environmental DNA and was mostly represented by novel sequences. The probes were developed to include detection of novel and uncultivated organisms. This includes detection for the Thermoplasmales group, a new group of Leptospirillum, the genus Sulfobacillus, the Acidiphilium genus, Acidimicrobium and relatives, and for organisms within the delta Proteobacteria. These probes have been used to examine the abundance and distribution of organisms, including novel and uncultivated taxa, and to clarify their potential contributions to AMD production at the site. We anticipate that these probes will be useful tools for exploration of the microbiology of other natural acidic environments and bioleaching systems.  相似文献   

17.
The microbial community composition of colonized cotton and leachate samples from a landfill was quantified using small subunit (SSU) rRNA probes (quantitative rRNA hybridization). Relative quantification of bacteria, eukaryotes, and archaea revealed variations in the landfill microbial community between samples from different areas of the landfill site and indicated the presence of potentially novel archaea. Anaerobic fungi were quantified in rumen fluid samples but were not sufficiently abundant for direct detection in the landfill samples.Molecular ecological studies should now be focused on assigning functions to the recognized microbial assemblages in any given environment. However, with respect to landfill microbiology, even the identity and abundance of the indigenous microbiota are barely understood. This is in part due to the unfeasibility of obtaining representative samples of the highly heterogeneous solid waste fraction, together with the inability to retrieve waste samples other than leachate from capped landfill sites (2). PCR-based molecular ecological studies of landfill leachate have nevertheless enabled the direct detection of species known to be involved in primary degradation of cellulose, the main carbon source in landfill (29), and more recently, taxa that had previously been thought to occur only in the herbivore gastrointestinal tract, i.e., anaerobic fungi (16) and fibrobacters (20). Landfill microcosms or leachate bioreactors have also been used to provide source material for DNA and culture-based analyses (3, 4), but the composition of these microbial communities has not been directly compared to those of the landfill sites themselves. In the field of molecular microbial ecology, the overreliance on analysis of sequences generated by PCR amplification of environmental DNA extracts has recently been questioned (13), primarily on the basis of the recognized variation in amplification efficiency with different DNA templates, a shortcoming which also applies to quantitative PCR techniques. Furthermore, there is evidence that probe-based methodologies for the detection of rRNA genes in environmental microarrays reveal a greater diversity of microbial taxa than does the traditional sequencing of clones from PCR amplification products (9).In this study, domain- and group-specific oligonucleotide probes were applied in slot blot hybridization experiments to quantify different obligately anaerobic microbial groups associated with cellulose degradation in rumen fluid, landfill leachate, and landfill microcosm RNA samples. The identity and molecular ecology of microorganisms capable of cellulose hydrolysis in the rumen are relatively well understood, and these samples therefore provided a reference point for evaluation of this approach as well as for providing fresh information on the abundance of anaerobic fungi in rumen fluid. Two landfill leachate microcosms were constructed with material from different waste cells within the same landfill site. Dewaxed cotton string (19) was incubated in each microcosm, and the RNA extracted from the cotton biofilm and the planktonic leachate-associated community was subjected to quantitative hybridization with domain-targeted probes and probes specific for particular subgroups of cellulolytic microorganisms.The almost entire small subunit (SSU) (16S/18S) rRNA gene in DNA extracted from each bacterial, archaeal, and eukaryotic control strain was amplified using the primer sets pA and pH′, 1Af and 1404R, NS1-Euk and Univ 1390, respectively (10, 21, 30, 33), and Phusion high-fidelity (HF) DNA polymerase (Finnzymes). PCRs were performed in 50-μl volumes containing the following: 0.2 mM each primer, 0.2 mM each deoxynucleoside triphosphate (dNTP), 1× Phusion HF buffer (Finnzymes), 3% dimethyl sulfoxide (DMSO), 1× bovine serum albumin (BSA), 1 unit Phusion HF DNA polymerase (Finnzymes) and double-distilled water (ddH2O). PCR cycling conditions were as follows: 98°C for 45 s, 30 cycles of 98°C for 10 s, 30 s at the specific annealing temperature for each primer set, 72°C for 20 s, and a final extension of 72°C for 8 min. PCR amplification products were cloned into Escherichia coli JM109 cells (Promega) by using the pGEM-T Easy vector system I (Promega) according to the manufacturer''s protocol. Plasmid DNA was extracted and sequenced in both orientations by Macrogen, Inc. (South Korea). Cloned DNA sequences were assembled into contigs by using PreGap 4 and Gap 4 software (25), and base calling was visually checked using the sequencing traces. Reference rRNAs were synthesized from linearized plasmid DNA (3 μg) by using either T7 or SP6 RNA polymerase (Promega), and plasmid DNA was digested using a Turbo DNA-free kit (Ambion).To determine the specificity of an oligonucleotide probe for its target group, each probe was hybridized against a panel of 32 reference rRNAs from control strains, which included representatives of phylogenetic groups indigenous to landfill and rumen environments, and control rRNAs possessing 1- to 4-bp mismatches within the probe target site. Stock reference rRNAs (100 ng μl−1) were denatured by adding 3 volumes of 2% (vol/vol) glutaraldehyde in 50 mM NaH2PO4 (pH 7.0), followed by incubation for 10 min at room temperature. The rRNA was then diluted to 2 ng μl−1 by using a hybridization sample buffer (RNase-free water containing 1 μg ml−1 poly[A] [Sigma] and 0.004% bromophenol blue). A 100-μl volume of each reference rRNA (200 ng) was blotted onto positively charged nylon membranes (Hybond) by using a slot blot device (Bio-Rad) under slight vacuum. Membranes were air dried, and rRNA was fixed to membranes by using a Stratalinker 2400 UV cross-linker (Stratagene). DNA oligonucleotide probes were 5′-end labeled with 32P by using a T4 polynucleotide kinase (New England Biolabs) and [γ-32P]ATP (Perkin Elmer) (8). Membranes were placed in glass hybridization tubes (Hybaid) and 100 μl hybridization buffer (0.9 M NaCl, 50 mM NaH2PO4 [pH 7.0], 5 mM EDTA, 10× Denhardt''s solution, 0.5% SDS, and 0.1 mg poly[A] ml−1) added per cm2 of membrane. Membranes were prehybridized for 2 h at 40°C. A labeled probe (400 μl) was subsequently added and hybridized at 40°C for 16 to 18 h in a Techne hybridizer HB-1 (Techne) and then washed for 15 min at 40°C in wash buffer (1× SSC [0.15 M NaCl plus 0.0015 M sodium citrate], 1% SDS) and washed two subsequent times for 30 min each at the optimum wash temperature (Tw) for each probe (Table (Table1).1). Phosphor screens (Molecular Dynamics) were used to visualize membranes, and hybridization signals were determined using a Storm 860 scanner (Molecular Dynamics) and quantified using TotalLab TL100 software (Nonlinear Dynamics).

TABLE 1.

SSU (16S/18S) rRNA oligonucleotide hybridization probes used in this study and their wash temperatures (Tw)
ProbeTarget siteaSequence (5′-3′)bTarget groupcTw (°C)Reference
Univ 13901,390-1,407GACGGGCGGTGTGTACAAAll known organisms4433
Eub 338338-355GCTGCCTCCCGTAGGAGTDomain Bacteria571
Cther 13521,352-1,370GRCAGTATDCTGACCTRCCClostridium III6329
Erec 482482-500GCTTCTTAGTCARGTACCGClostridium XIVab5711
Euk 516502-517ACCAGACTTGCCCTCCDomain Eukarya511
Chyt 719719-738CAGTACACACAATGAAGTGCChytridiomycetes4416
Arc 915915-934GTGCTCCCCCGCCAATTCCTDomain Archaea6426
Open in a separate windowaProbe position according to Escherichia coli 16S rRNA gene numbering.bAmbiguities: K = G or T; S = G or C; W = A or T; Y = C or T; H = A, C, or T; R = A or G; M = A or C; D = G, A, or T; V = A, C, or G.cRoman numerals refer to phylogenetic cluster of the Clostridiaceae as previously designated (6).All probes were checked using the Ribosomal Database Project (RDP) probe match function (5) and the Probebase website (17) and found to be specific for their target group (Table (Table1).1). Probe specificity was initially tested using the published Tw for each respective probe. If hybridization with nontarget reference rRNAs was observed after washing at the published Tw, the membrane was subsequently washed with increasing temperatures of 1 to 2°C until hybridization with nontarget reference rRNAs could not be observed. The Tws of the new probes, Chyt 719 and Cther 1352, were determined in this manner (Table (Table1).1). The universal and domain-specific hybridization probes performed as expected, and hybridization was observed only with target organisms (Fig. (Fig.1).1). The bacterial probe (Eub 338) did not hybridize to the Clostridium pasteurianum reference rRNA (Eub 338 membrane, position 11 [Fig. [Fig.1])1]) because the probe target site had a 1-bp mismatch with the Eub 338 probe, and this observation therefore confirmed the absolute specificity of probe Eub 338 under the hybridization conditions applied. Although signal intensities varied (Fig. (Fig.1),1), this is not unexpected in quantitative RNA probing (22, 24) and is obviated here by our inclusion of additional controls in which known mixtures of control RNAs were used to demonstrate that quantitation was nevertheless achievable (Fig. (Fig.22).Open in a separate windowFIG. 1.Hybridization probe specificity tests. (A) Membrane layout of reference SSU rRNAs generated from 32 target and nontarget species. (B) Phylogenetic affiliation of reference rRNA species. (C) Hybridization of universal and domain-specific probes to target and nontarget SSU reference rRNAs. The membrane layout was as shown in panel A. Sulfate-reducing bacterium (SRB) groups as defined by Daly et al. (7); Clostridiaceae clusters as described by Collins et al. (6). The universal probe did not hybridize with the archaeal control rRNAs (position 31 and 32 on the universal membrane), as the archaeal control RNAs were generated from cloned sequences containing an incomplete 16S rRNA gene product. Therefore, the probe binding site for Univ 1390 was absent from the rRNA molecules.Open in a separate windowFIG. 2.Quantification of SSU rRNA in a “spiked” mixture containing known quantities of reference rRNA, using domain- and group-specific hybridization probes. Error bars represent standard deviations; samples were blotted in triplicate on each membrane; and results represent the average of triplicate blots. For probe targets and specificity, see Table Table11.Probes Cther 1352 (Clostridium cluster III), Erec 482 (Clostridium cluster XIV), and Chyt 719 (Neocallimastigales) hybridized only with their target reference rRNAs (data not shown). Dewaxed cotton string (32) in nylon mesh bags was suspended from nylon ropes inside the necks of two 10-liter carboys (Nalgene). The carboys were transported to the Bromborough Dock landfill site (Wirral, United Kingdom) where they were filled to the top with fresh landfill leachate pumped directly from risers 3 and 5. Once filled to the brim, the microcosms were immediately sealed and transported to the laboratory, where they were incubated at ambient temperature. Nylon mesh bags containing cotton were retrieved after 6 weeks of incubation in the microcosm. One bovine and two ovine rumen fluid samples were kindly provided by Richard Kemp (University of Liverpool). For RNA extraction, 500 μl of rumen fluid containing fibrous plant material, a small piece of colonized cotton (∼0.5 g) from landfill microcosms, or an entire 0.2- and 0.7-μm-pore-diameter filter membrane through which 2 liters of leachate had been filtered was processed according to the method of Griffiths et al. (12) and DNase treated with a Turbo DNA-free kit (Ambion). RNA extracts at a concentration of 100 ng μl−1 were denatured by adding 3 volumes of 2% (vol/vol) glutaraldehyde in 50 mM NaH2PO4 (pH 7.0), incubated for 10 min at room temperature, and diluted in a hybridization sample buffer to a final concentration of 4 ng μl−1. A 100-μl volume of sample (400 ng RNA) was applied in triplicate to positively charged nylon membranes and hybridized as described above. A dilution series of known RNA quantities from an appropriate reference rRNA positive control recognized by the oligonucleotide probe target group was included on each membrane as a standard. Following hybridization, each membrane was washed at the optimum wash temperature (Tw) for each probe (Table (Table1).1). To determine rRNA abundance for each oligonucleotide probe target group, a standard curve was constructed using linear regression from the known quantities of rRNA standards applied to each membrane. The relative abundance of each target group was calculated as a percentage of the total SSU rRNA abundance as determined by hybridization of each sample with a universal probe (Univ 1390). Abundances of target groups relative to total bacterial 16S rRNA and eukaryotic 18S rRNA were determined by comparison with data from application of the general bacterial and general eukaryotic probes, Eub 338 and Euk 516, respectively (1). Quantitative hybridization of the spiked rRNA mixture also demonstrated that all seven of the probes applied in this study were stringent and capable of accurate quantification of the mixed rRNA template sample (Fig. (Fig.22).Community RNA preparations from bovine and ovine rumen fluid samples were hybridized with the suite of rRNA probes described and validated above. Quantitative data were obtained for bacteria, eukaryotes, and archaea (Fig. (Fig.3),3), in addition to Clostridium cluster XIV and Neocallimastigales (Table (Table2).2). Although the Clostridium cluster III probe was successfully applied to the spiked rRNA mixture (Fig. (Fig.2),2), a very low hybridization signal was obtained for rumen fluid samples. Clostridium cluster III has been quantified in equine colonic samples, and the relative abundance varied from 1.3% to 3.0% of the total rRNA (8). It may be, therefore, that the relative proportion of cluster III clostridia is also low in the rumen fluid samples analyzed here and abundances of 1 to 3% are below the threshold for accurate quantification. Similar abundances of bacteria, archaea, and eukaryotes were observed across the three rumen fluid samples. The total abundances for the three domain probes combined were 142%, 115%, and 98% for each of the rumen samples (bovine, ovine A, and ovine B), respectively, indicating that the universal probe does not bind to all SSU rRNA molecules. The relative abundance of bacteria in the rumen samples varied from 67% to 106% (Fig. (Fig.3),3), indicating that bacteria are the most abundant microbial group in the rumen. Archaea were the second most abundant group, with relative abundance values ranging from 19% to 32%, and the relative abundance of eukaryotes varied from 9.4% to 17.6% (Fig. (Fig.3).3). A previous study using the same probe (Eub 338) by Lin et al. (15) assessed the microbial community structure in samples from domestic animals (including bovine and ovine samples) and also reported bacteria as the most abundant group, with relative abundances similar to those obtained in this study.Open in a separate windowFIG. 3.Quantification of SSU rRNA in bovine and ovine rumen fluid community RNA samples using domain-specific hybridization probes. Error bars represent standard deviations; samples were blotted in triplicate on each membrane; and results represent the average of triplicate blots. For probe targets and specificity, see Table Table11.

TABLE 2.

Quantification of members of Clostridium cluster XIVab and anaerobic fungi (Neocallimastigales) compared to total SSU rRNA and total bacterial and eukaryotic rRNA, respectively, in ovine and bovine rumen samples
Sample% Total of indicated rRNA in:
Clostridiaceae cluster XIVab
Anaerobic fungi (Neocallimastigales)
SSUBacterialSSUEukaryotic
Bovine rumen26.5 ± 2.925.1 ± 0.513.8 ± 1.178.4 ± 1.5
Ovine rumen A15.3 ± 1.121.1 ± 2.46.8 ± 1.069.7 ± 1.7
Ovine rumen B8.3 ± 1.212.4 ± 0.95.1 ± 3.058.5 ± 1.8
Open in a separate windowThe relative abundance of Clostridium cluster XIV, as determined using probe Erec 482, varied from 8 to 27% for the rumen samples (Table (Table2).2). These data are in agreement with the study of Daly and Shirazi-Beechey (8), in which the abundance of cluster XIV as determined with the same probe (Erec 482) was found to represent the highest proportion of rRNA found in any one of the equine intestinal samples studied (28%). The abundance of cluster XIV clostridia was found to vary greatly in their study, and this was also the case here. Quantitative data for the anaerobic fungi also compared favorably with previously published data. The average abundance of Neocallimastigales in the rumen samples was 9% (range, 5 to 14%) (Table (Table2),2), and it has been suggested that anaerobic fungi represent about 8% of the rumen biomass based on quantification of lipid biomarkers (14). The data reported here therefore suggest that anaerobic fungi account for between 59 and 78% of the eukaryotic rRNA in ovine and bovine rumen samples (Table (Table2),2), further supporting their importance in cellulose hydrolysis in rumen environments (27). Members of this fungal order possess the most-potent cellulase systems known in the biological world (31) and are recognized as major colonizers of plant biomass (27).It was not possible to obtain quantitative data for any of the Clostridium clusters or the Neocallimastigales in the landfill leachate or colonized cotton samples because only low levels of hybridization were observed. However, domain-level relative abundances of the samples were obtained and demonstrated marked differences in the microbial community composition between the two microcosm experiments. No eukaryotic rRNA was detected in community RNA from Bromborough Dock riser 3 leachate or colonized cotton samples that had been suspended in leachate samples taken from riser 3 (Fig. (Fig.4).4). However, eukaryotes were detected in the riser 5 samples, and their relative abundances were 7% (±0.5%) and 17% (±0.5%) for the leachate and colonized cotton samples, respectively (Fig. (Fig.4).4). These differences in the detection levels for eukaryotes are probably a reflection of the inherent heterogeneity of the microbial community in samples drawn from different areas of the same landfill site.Open in a separate windowFIG. 4.Quantification of bacteria, archaea, and eukaryotes in community RNA samples extracted from colonized cotton and leachate from the riser 3 (A) and riser 5 (B) landfill leachate microcosms, using domain-specific hybridization probes targeting the SSU rRNA gene. Error bars represent standard deviations; samples were blotted in triplicate on each membrane; and results represent the average of triplicate blots. For probe targets and specificity, see Table Table11.An encouraging observation is that there appears to be a close correlation between the abundances of bacteria, archaea, and eukaryotes in landfill leachate and the colonized cotton samples in leachate microcosms. These data therefore support the use of leachate-based laboratory simulators of landfill microbiology, at least in terms of comparable relative abundances of bacteria, archaea, and eukaryotes. The relative abundance of archaea in the riser 3 microcosm samples was, however, surprising. Abundances of 225% (±42%) and 215% (±34%) were obtained for the colonized cotton and leachate samples, respectively. As the Arc 915 probe performed so effectively in quantifying the spiked RNA and rumen samples (Fig. (Fig.22 and and3)3) and in probe specificity tests (Fig. (Fig.1),1), it is unlikely that this is erroneous. The most likely explanation is the presence of archaea that have sequence diversity within the probe target site for the universal probe (Univ 1390) and are therefore not detected by that probe. This implies the existence of as-yet-uncharacterized members of the Archaea in the landfill microbial community. Bacteria were the most abundant group in the riser 5 microcosm samples (Fig. (Fig.4)4) and represented 84% (±5%) and 80% (±12%) of the total rRNA in the colonized cotton and leachate samples, respectively.A major concern in the study of landfill site microbiology is the question of whether a leachate sample is representative of the microbial community that colonizes biodegradable organic material within the site. Furthermore, the heterogeneity of landfill waste across a given site means that obtaining a representative sample of the waste fraction is impossible (23). A network of leachate collection pipes and pumps (or risers) removes leachate from the base of the waste cell to a treatment plant, and thus, leachate is the only sample type available for direct analysis. As leachate results from the percolation of liquid through the site, it potentially provides a comprehensive sample of the landfill microbiota. Lab-scale landfill bioreactors have also been used in previous studies of landfill microbiology (3, 4). In this study, the construction of laboratory-based landfill leachate microcosms enabled the comparison of the microbial community composition of colonized cellulosic material and leachate samples derived from the same area of a landfill site. For the first time, these data have highlighted two important observations: (i) the composition of microbial populations in different areas of the same landfill site can be significantly different (Fig. (Fig.4);4); and (ii) at the domain level, the relative abundances of bacteria, archaea, and eukaryotes in colonized cotton substrates from microcosm experiments and landfill leachate samples from the same region of the landfill site in most cases are not significantly different. To our knowledge, there have been no previous reports on the relative contributions of bacteria, archaea, and eukaryotes to the total microbial community in leachate or colonized cellulosic substrates in landfill, and this study therefore provides an indication of the importance of each microbial domain in situ.A limitation of the slot blot hybridization method used here is the sensitivity of detection that can be achieved, and this method has now almost entirely been replaced by quantitative PCR methodologies that offer up to 1,000-fold greater sensitivity of detection than do RNA hybridization experiments (18). Single probes may, however, be more capable of detecting a greater diversity of sequences in SSU rRNA than that which would be detected by amplification with a PCR primer pair (28). This has certainly been the case for the phylogenetic microarray, the PhyloChip (9), where the application of 16S rRNA gene probes identified a greater diversity of microbial taxa in environmental samples than that of cloned and sequenced universal PCR amplification products from the same samples.  相似文献   

18.
For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake (Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB).  相似文献   

19.
Despite the fact that the heterotrophic dinoflagellate Pfiesteria shumwayae is an organism of high interest due to alleged toxicity, its abundance in natural environments is poorly understood. To address this inadequacy, a real-time quantitative PCR assay based on mitochondrial cytochrome b (cob) and18S rRNA gene was developed and P. shumwayae abundance was investigated in several geographic locations. First, cob and its 5′-end region were isolated from a P. shumwayae culture, revealing three different copies, each consisting of an identical cob coding region and an unidentified region (X) of variable length and sequence. The unique sequences in cob and the X region were then used to develop a P. shumwayae-specific primer set. This primer set was used with reported P. shumwayae-specific 18S primers in parallel real-time PCRs to investigate P.shumwayae abundance from Maine to North Carolina along the U.S. east coast and along coasts in Chile, Hawaii, and China. Both genes generally gave similar results, indicating that this species was present, but at low abundance (mostly <10 cells · ml−1), in all the American coast locations investigated (with the exception of Long Island Sound, where which both genes gave negative results). Genetic variation was detected by use of both genes in most of the locations, and while cob consistently detected P. shumwayae or close genetic variants, some of the 18S PCR products were unrelated to P. shumwayae. We conclude that (i) the real-time PCR assay developed is useful for specific quantification of P. shumwayae, and (ii) P. shumwayae is distributed widely at the American coasts, but normally only as a minor component of plankton even in high-risk estuaries (Neuse River and the Chesapeake Bay).  相似文献   

20.
18S ribosomal DNA and internal transcribed spacer 2 (ITS-2) full-length sequences, each of which was sequenced three times, were used to construct phylogenetic trees with alignments based on secondary structures, in order to elucidate genealogical relationships within the Aplysinidae (Verongida). The first poriferan ITS-2 secondary structures are reported. Altogether 11 Aplysina sponges and 3 additional sponges (Verongula gigantea, Aiolochroia crassa, Smenospongia aurea) from tropical and subtropical oceans were analyzed. Based on these molecular studies, S. aurea, which is currently affiliated with the Dictyoceratida, should be reclassified to the Verongida. Aplysina appears as monophyletic. A soft form of Aplysina lacunosa was separated from other Aplysina and stands at a basal position in both 18S and ITS-2 trees. Based on ITS-2 sequence information, the Aplysina sponges could be distinguished into a single Caribbean–Eastern Pacific cluster and a Mediterranean cluster. The species concept for Aplysina sponges as well as a phylogenetic history with a possibly Tethyan origin is discussed.Reviewing Editor: Dr. Martin Kreitman  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号