首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apolipoprotein E (apoE) is a 34-kDa exchangeable apolipoprotein that regulates metabolism of plasma lipoproteins by functioning as a ligand for members of the LDL receptor family. The receptor-binding region localizes to the vicinity of residues 130-150 within its independently folded 22-kDa N-terminal domain. In the absence of lipid, this domain exists as a receptor-inactive, globular four-helix bundle. Receptor recognition properties of this domain are manifest upon lipid association, which is accompanied by a conformational change in the protein. Fluorescence resonance energy transfer has been used to monitor helix repositioning, which accompanies lipid association of the apoE N-terminal domain. Site-directed mutagenesis was used to replace naturally occurring Trp residues with phenylalanine, creating a Trp-null apoE3 N-terminal domain (residues 1-183). Subsequently, tyrosine residues in helix 2, helix 3, or helix 4 were converted to Trp, generating single Trp mutant proteins. The lone cysteine at position 112 was covalently modified with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine, which serves as an energy acceptor from excited tryptophan residues. Fluorescence resonance energy transfer analysis of apoE N-terminal domain variants in phospholipid disc complexes suggests that the helix bundle opens to adopt a partially extended conformation. A model is presented that depicts a tandem arrangement of the receptor-binding region of the protein in the disc complex, corresponding to its low density lipoprotein receptor-active conformation.  相似文献   

2.
The region of apolipoprotein E (apoE) that interacts directly with the low density lipoprotein (LDL) receptor lies in the vicinity of residues 136-150, where lysine and arginine residues are crucial for full binding activity. However, defective binding of carboxyl-terminal truncations of apoE3 has suggested that residues in the vicinity of 170-183 are also important. To characterize and define the role of this region in LDL receptor binding, we created either mutants of apoE in which this region was deleted or in which arginine residues within this region were sequentially changed to alanine. Deletion of residues 167-185 reduced binding activity (15% of apoE3), and elimination of arginines at positions 167, 172, 178, and 180 revealed that only position 172 affected binding activity (2% of apoE3). Substitution of lysine for Arg(172) reduced binding activity to 6%, indicating a specific requirement for arginine at this position. The higher binding activity of the Delta167-185 mutant relative to the Arg(172) mutant (15% versus 2%) is explained by the fact that arginine residues at positions 189 and 191 are shifted in the deletion mutant into positions equivalent to 170 and 172 in the intact protein. Mutation of these residues and modeling the region around these residues suggested that the influence of Arg(172) on receptor binding activity may be determined by its orientation at a lipid surface. Thus, the association of apoE with phospholipids allows Arg(172) to interact directly with the LDL receptor or with other residues in apoE to promote its receptor-active conformation.  相似文献   

3.
Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade.  相似文献   

4.
5.
Abnormal low density lipoprotein metabolism in apolipoprotein E deficiency   总被引:2,自引:0,他引:2  
Apolipoprotein(apo) E deficiency is an inherited disease characterized by type III hyperlipoproteinemia and less than 1% normal plasma apoE concentration. The role of apoE in LDL metabolism was investigated by quantitating the metabolism of radiolabeled normal and apoE-deficient LDL in both normal and apoE-deficient subjects. ApoE deficiency resulted in an accumulation of plasma IDL, and a decreased synthesis of LDL consistent with a block in the conversion of IDL to LDL. The LDL isolated from the apoE-deficient patient was similar to normal LDL in hydrated density, size, and composition. However, the apoE-deficient LDL was kinetically abnormal with delayed catabolism in both normal subjects and the apoE-deficient patient. In addition, the catabolism of normal LDL in the apoE-deficient subject was increased. These results were interpreted as indicating that apoE is necessary for the conversion of IDL to LDL and the formation of kinetically normal LDL. The rapid catabolism of normal LDL in the apoE-deficient patient suggests an up-regulation of the hepatic LDL receptor pathway. Based on these results, apoE is proposed to play an important role in the conversion of IDL to LDL, the formation of kinetically normal LDL, and the regulation of LDL receptor function.  相似文献   

6.
We previously identified a defect in the in vivo catabolism of low density lipoprotein (LDL) from hypercholesterolemic pigs carrying a mutant apolipoprotein B allele. In the present studies, we examined the in vitro metabolism of mutant LDL in cultured pig fibroblasts. A 3-fold higher concentration of mutant LDL (compared to control) was needed to displace 50% of control 125I-LDL binding. Mutant LDL had a 6-fold higher dissociation constant than control LDL. Scatchard plots of the binding data were concave upward, suggesting multiple classes of binding sites or negative cooperativity. The mutant LDL degradation rate was reduced by 40%; this decrease could be attributed to a dense LDL subspecies. Mutant and control buoyant LDL subspecies were degraded more slowly than the corresponding dense LDL subspecies. Together, these studies show that diminished LDL receptor binding can result from mutations in apolipoprotein B and from changes in the lipid composition of LDL particles.  相似文献   

7.
Mutations in apolipoprotein B (APOB) may reduce binding of low density lipoprotein (LDL) to the LDL receptor and cause hypercholesterolemia. We showed that heterozygotes for a new mutation in APOB have hypobetalipoproteinemia, despite a reduced binding of LDL to the LDL receptor. APOB R3480P heterozygotes were identified among 9,255 individuals from the general population and had reduced levels of apoB-containing lipoproteins. Most surprisingly, R3480P LDL bound with lower affinity to the LDL receptor than non-carrier LDL in vitro, and these results were confirmed by turnover studies of LDL in vivo. In very low density lipoprotein (VLDL) turnover studies, the amount of VLDL converted to LDL in R3480P heterozygotes was substantially reduced, suggesting that this was the explanation for the hypobetalipoproteinemia observed in these individuals. Our findings emphasized the importance of combining in vitro studies with both human in vivo and population-based studies, as in vitro studies often have focused on very limited aspects of complex mechanisms taken out of their natural context.  相似文献   

8.
Apolipoprotein (apo-) E2 and beta-migrating very low density lipoproteins (beta-VLDL) (which were isolated from type III hyperlipoproteinemic subjects) both demonstrated defective binding to apo-E and apo-B,E receptors on dog liver membranes and to apo-B,E low density lipoproteins (LDL) receptors on fibroblasts. The defective binding activity of the apo-E2 and beta-VLDL varied from very poor to nearly normal. The ability of the beta-VLDL to interact with hepatic apo-E receptors was enhanced by the addition of normal apo-E3 to the beta-VLDL. Furthermore, cysteamine treatment of the apo-E2 in beta-VLDL enhanced binding of the beta-VLDL to both apo-E and apo-B,E receptors. The importance of apo-E in mediating the receptor binding of beta-VLDL to these receptors was confirmed by using monoclonal antibodies. The residual binding activity of beta-VLDL to apo-E and apo-B,E receptors was inhibited by greater than 90% with anti-apo-E, while the addition of anti-apo-B had little effect. The apo-B in the beta-VLDL was capable of binding to apo-B,E receptors after the hydrolysis of the beta-VLDL triglycerides with milk lipoprotein lipase. Lipase treatment yielded, two subfractions of beta-VLDL. One fraction (d = 1.02 to 1.03 g/ml) was enriched with apo-B100; the other fraction (d less than 1.006 g/ml) was enriched with apo-B48 and apo-E2. Significantly increased amounts of the apo-B100-enriched fraction bound to apo-B,E receptors. Inhibition of this binding caused by the addition of anti-apo-B indicated that the binding activity of this subfraction was mediated by apo-B100. The apo-B48-enriched fraction did not show a significant increase in receptor binding, suggesting that apo-B48 does not bind to these receptors. In a control experiment, it was shown that triglyceride-rich VLDL, which contain normal apo-E3 and apo-B100, bind significantly to both liver apo-E receptors and fibroblast apo-B,E receptors. This binding activity was inhibited by greater than 90% with anti-apo-E. Lipase hydrolysis of the VLDL did not further enhance their receptor-binding activity. These results demonstrate that apo-E, and not apo-B, is the major determinant mediating the receptor-binding activity of cholesterol-rich beta-VLDL and triglyceride-rich VLDL.  相似文献   

9.
Factors affecting the association of apolipoprotein E (apoE) with human plasma very low density lipoprotein (VLDL) were investigated in experiments in which the lipid content of the lipoprotein was modified either by lipid transfer in the absence of lipolysis or through the action of lipoprotein lipase. In both cases, lipoprotein particles initially containing no apoE (VLDL-E), isolated by heparin affinity chromatography, were modified until they had the same lipid composition as native apoE-containing VLDL (VLDL+E) from the same plasma. Transfer-modified lipoproteins, unlike native VLDL+E, did not bind apoE or interact with heparin. In contrast, VLDL-E, whose lipid composition was modified to the same extent by lipase, bound apoE and bound to heparin under the same conditions as native VLDL+E. A structural protein (apolipoprotein B) epitope characteristic of VLDL+E was expressed during lipolysis prior to ApoE or heparin binding. The data suggest that the reaction of apoE with VLDL-E is a two-step reaction. The appearance of apoB is modified during lipolysis, with expression of a major heparin-binding site. The modified VLDL then becomes competent to bind apoE. The lipid composition of VLDL appears not to be a major factor in the ability of VLDL to bind apoE or to bind to heparin.  相似文献   

10.
When human apolipoprotein E (apoE), which forms a self-associated tetramer in an aqueous solution, bound to the surface of triolein/phosphatidylcholine microemulsion with a particle diameter of 26 nm, it became monomeric on the lipid particle surface without strong evidence for its accumulation on a particular particle that might be expected from its tetramer formation in the aqueous phase. ApoE in the form of the self-associated tetramer did not inhibit binding of human low density lipoprotein (LDL) to its receptor on cultured human skin fibroblast. LDL binding was inhibited only when apoE was bound to the lipid particle surface. The affinity of the apoE-containing lipid particle to the LDL receptor was of the same order as that of LDL on the basis of particle molarity when the surface of the particle was covered with apoE up to 40 to 50% of the saturation level. When the particle was covered more with apoE, the affinity increased by some 20 times. Since the surface of the lipid particle was saturated with 7 apoE molecules, the particle seemed to require to have at least 4 apoE molecules on its surface in order to obtain high binding affinity to LDL receptor.  相似文献   

11.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

12.
We have shown previously that low density lipoprotein (LDL) subjected to vortexing forms self-aggregates that are avidly phagocytosed by macrophages. That phagocytic uptake is mediated by the LDL receptor. We now show that LDL self-aggregation is strongly inhibited (80-95%) by the presence of high density lipoprotein (HDL) or apolipoprotein (apo) A-I. Another type of LDL aggregation, namely that induced by incubation of LDL with phospholipase C, was also markedly inhibited by HDL or apoA-I. The aggregation of LDL induced by vortexing was not inhibited by 2.5 M NaCl, and apoA-I was still able to block LDL aggregation at this high salt concentration, strongly suggesting hydrophobic interactions as the basis for the effect of apoA-I. The fact that apoA-I protected against LDL aggregation induced by two apparently quite different procedures suggests that the aggregation in these two cases has common features. We propose that these forms of LDL aggregation result from the exposure of hydrophobic domains normally masked in LDL and that the LDL-LDL association occurs when these domains interact. ApoA-I, because of its amphipathic character, is able to interact with the exposed hydrophobic domains of LDL and thus block the intermolecular interactions that cause aggregation.  相似文献   

13.
The human liver apoB-100 gene cloned in the lambda gt-11 expression vector expresses fusion proteins reacting with apoB antibodies. A fusion protein induced from a apoB-lambda gt-11 clone reacted with apoB-100 monoclonal antibodies known to block the binding of LDL to the LDL receptor. The fusion protein contains an amino acid sequence domain enriched in positively charged residues which is complementary to the negatively charged amino acids present in the consensus LDL receptor binding domain. This sequence of apoB-100 is proposed as a binding domain for the interaction with the LDL receptor. Comparison of derived amino acid sequences from the entire structure of apoB-100 molecule revealed several similar domains enriched in positively charged amino acids. A consensus sequence of the potential LDL binding domain was identified which contained positively charged amino acids at positions 1, 5 and 8 and a loop of 8-11 amino acids followed by two adjacent positively charged amino acids. These results are interpreted as indicating that there are several potential LDL receptor binding domains in apoB-100.  相似文献   

14.
The low density lipoprotein receptor   总被引:3,自引:0,他引:3  
The study of familial hypercholesterolemia at the molecular level has led to its advancement from a clinical syndrome to a fascinating experimental system. FH was first described 50 years ago by Carl Müller who concluded that the disease produces high plasma cholesterol levels and myocardial infarctions in young people, and is transmitted as an autosomal dominant trait determined by a single gene. The existence of two forms of FH, namely heterozygous and homozygous, was recognized by Khachadurian and Fredrickson and Levy much later. The value of FH as an experimental model system lies in the availability of homozygotes, because mutant genes can be studied without interference from the normal gene. The first and most important breakthrough was the realization that the defect underlying FH could be studied in cultured skin fibroblasts. Rapidly, the LDL receptor pathway was conceptualized and its dysfunction in cells from FH homozygotes was demonstrates. Isolation of the normal LDL receptor protein and studies on the biosynthesis and structure of abnormal receptors in mutant cell lines provided essential groundwork for elucidation of defects at the DNA level. The power of the experimental system, FH, became nowhere more obvious than in work that correlated structural information at the protein level with the elucidation of defined defects in the LDL receptor gene. In addition to revealing important structure-function relationships in the LDL receptor polypeptide and delineating mutational events, studies of FH have established several more general concepts. First, the tight coupling of LDL binding to its internalization suggested that endocytosis was not a non-specific process as suggested from early observations. The key finding was that LDL receptors clustered in coated pits, structures that had been described by Roth and Porter 10 years earlier. These investigators had demonstrated, in electron microscopic studies on the uptake of yolk proteins by mosquito oocytes, that coated pits pinch off from the cell surface and form coated vesicles that transport extracellular fluid into the cell. Studies on the LDL receptor system showed directly that receptor clustering in coated pits is the essential event in this kind of endocytosis, and thus established receptor-mediated endocytosis as a distinct mechanism for the transport of macromolecules across the plasma membrane. Subsequently, many additional systems of receptor-mediated endocytosis have been defined, and variations of the overall pathway have been described.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The laying hen expresses two different lipoprotein transport receptors in cell-specific fashion. On the one hand, a 95-kDa oocyte membrane protein mediates the uptake of the major yolk precursors, very low density lipoprotein, and vitellogenin; on the other hand, somatic cells synthesize a 130-kDa receptor that is involved in the regulation of cellular cholesterol homeostasis (Hayashi, K., Nimpf, J., and Schneider, W. J. (1989) J. Biol. Chem. 264, 3131-3139). Here we show that the oocyte-specific receptor binds, in addition to the yolk precursor proteins, an apolipoprotein of mammalian origin, apolipoprotein E. Ligand blotting, a solid-phase binding assay, and antireceptor antibodies were employed to demonstrate that binding of vitellogenin, very low density lipoprotein (via apolipoprotein B), and apolipoprotein E occurs to closely related, if not identical, sites on the 95-kDa oocyte receptor. The binding properties of lipovitellin, which harbors the receptor recognition site of vitellogenin, are analogous to those of apolipoprotein E: both require association with lipid for expression of functional receptor binding. The ligand specificity of the avian oocyte lipoprotein receptor supports the hypothesis that vitellogenin, which has evolved in oviparous species, represents a counterpart to mammalian apolipoprotein E.  相似文献   

16.
Binding of low density lipoprotein (LDL) to platelets enhances platelet responsiveness to various aggregation-inducing agents. However, the identity of the platelet surface receptor for LDL is unknown. We have previously reported that binding of the LDL component apolipoprotein B100 to platelets induces rapid phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Here, we show that LDL-dependent activation of this kinase is inhibited by receptor-associated protein (RAP), an inhibitor of members of the LDL receptor family. Confocal microscopy revealed a high degree of co-localization of LDL and a splice variant of the LDL receptor family member apolipoprotein E receptor-2 (apoER2') at the platelet surface, suggesting that apoER2' may contribute to LDL-induced platelet signaling. Indeed, LDL was unable to induce p38MAPK activation in platelets of apoER2-deficient mice. Furthermore, LDL bound efficiently to soluble apoER2', and the transient LDL-induced activation of p38MAPK was mimicked by an anti-apoER2 antibody. Association of LDL to platelets resulted in tyrosine phosphorylation of apoER2', a process that was inhibited in the presence of PP1, an inhibitor of Src-like tyrosine kinases. Moreover, phosphorylated but not native apoER2' co-precipitated with the Src family member Fgr. This suggests that exposure of platelets to LDL induces association of apoER2' to Fgr, a kinase that is able to activate p38MAPK. In conclusion, our data indicate that apoER2' contributes to LDL-dependent sensitization of platelets.  相似文献   

17.
Apolipoprotein (apo) E stimulates the secretion of very low density lipoproteins (VLDLs) by an as yet unknown mechanism. Recently, a working mechanism for apoE was proposed (Twisk, J., Gillian-Daniel, D. L., Tebon, A., Wang, L., Barrett, P. H., and Attie, A. D. (2000) J. Clin. Invest. 105, 521-532) in which apoE prevents the inhibitory action of the low density lipoprotein receptor (LDLr) by binding to it. We have first tested whether this newly described effect of the LDLr on VLDL secretion, obtained in vitro, is also observed in vivo. In LDLr knockout mice (LDLr-/-), the production of VLDL triglycerides and apoB was 30% higher than that in controls. Also the ratio of apoB100:apoB48 secretion was increased in the LDLr-/- mice. The composition of nascent VLDL was similar in both strains. To test whether the action of apoE depends on the presence of the LDLr, VLDL production was measured in LDLr-/- and apoE-/- LDLr-/- mice. Deletion of apoE on a LDLr-/- background still caused a 50% decrease of VLDL triglycerides and apoB production. The composition of nascent VLDL was again similar for both strains. We conclude that the effect of apoE on hepatic VLDL production is independent of the presence of the LDLr.  相似文献   

18.
The binding of native rabbit beta-very low density lipoproteins (beta-VLDL) to the low density lipoprotein receptor-related protein (LRP) requires incubation with exogenous apolipoprotein (apo) E. Inclusion of a mixture of the C apolipoproteins in the incubation inhibits this binding. In the present study, the ability of the individual C apolipoproteins (C-I, C-II, and C-III) to block binding of beta-VLDL to the LRP was examined by measuring cholesteryl ester formation in mutant fibroblasts that lack low density lipoprotein receptors or by measuring binding to the LRP using ligand blotting. In each assay, both apoC-I and apoC-II inhibited binding; apoC-I was the more effective inhibitor. Apolipoprotein C-III had no effect on binding activity, regardless of its sialylation level. Binding of human apoE to rabbit beta-VLDL in the absence or presence of human apoC-I, apoC-II, and monosialo-apoC-III was also determined, by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results of these studies are consistent with a mechanism in which exogenous human apoE displaces the endogenous apoE and the beta-VLDL particle becomes enriched with apoE (by 4.2-fold in this study). At this higher apoE content, the beta-VLDL bound to the LRP. Inclusion of apoC-I, apoC-II, or apoC-III in the incubation mixture resulted in a differential displacement of apoE from the beta-VLDL; however, at the concentrations examined, only apoC-I and apoC-II were capable of displacing sufficient apoE to abolish binding to LRP.  相似文献   

19.
The purpose of the present study was to test the hypothesis that lecithin:cholesterol acyltransferase (LCAT) deficiency would accelerate atherosclerosis development in low density lipoprotein (LDL) receptor (LDLr-/-) and apoE (apoE-/-) knockout mice. After 16 weeks of atherogenic diet (0.1% cholesterol, 10% calories from palm oil) consumption, LDLr-/- LCAT-/- double knockout mice, compared with LDLr-/- mice, had similar plasma concentrations of free (FC), esterified (EC), and apoB lipoprotein cholesterol, increased plasma concentrations of phospholipid and triglyceride, decreased HDL cholesterol, and 2-fold more aortic FC (142 +/- 28 versus 61 +/- 20 mg/g protein) and EC (102 +/- 27 versus 61+/- 27 mg/g). ApoE-/- LCAT-/- mice fed the atherogenic diet, compared with apoE-/- mice, had higher concentrations of plasma FC, EC, apoB lipoprotein cholesterol, and phospholipid, and significantly more aortic FC (149 +/- 62 versus 109 +/- 33 mg/g) and EC (101 +/- 23 versus 69 +/- 20 mg/g) than did the apoE-/- mice. LCAT deficiency resulted in a 12-fold increase in the ratio of saturated + monounsaturated to polyunsaturated cholesteryl esters in apoB lipoproteins in LDLr-/- mice and a 3-fold increase in the apoE-/- mice compared with their counterparts with active LCAT. We conclude that LCAT deficiency in LDLr-/- and apoE-/- mice fed an atherogenic diet resulted in increased aortic cholesterol deposition, likely due to a reduction in plasma HDL, an increased saturation of cholesteryl esters in apoB lipoproteins and, in the apoE-/- background, an increased plasma concentration of apoB lipoproteins.  相似文献   

20.
PCSK9 (proprotein convertase subtilisin-like/kexin type 9) is an emerging target for pharmaceutical intervention. This multidomain protein interacts with the LDL receptor (LDLR), promoting receptor degradation. Insofar as PCSK9 inhibition induces a decrease in plasma cholesterol levels, understanding the nature of the binding interaction between PCSK9 and the LDLR is of critical importance. In this study, the ability of PCSK9 to compete with apoE3 N-terminal domain-containing reconstituted HDL for receptor binding was examined. Whereas full-length PCSK9 was an effective competitor, the N-terminal domain (composed of the prodomain and catalytic domain) was not. Surprisingly, the C-terminal domain (CT domain) of PCSK9 was able to compete. Using a direct binding interaction assay, we show that the PCSK9 CT domain bound to the LDLR in a calcium-dependent manner and that co-incubation with the prodomain and catalytic domain had no effect on this binding. To further characterize this interaction, two LDLR fragments, the classical ligand-binding domain (LBD) and the EGF precursor homology domain, were expressed in stably transfected HEK 293 cells and isolated. Binding assays showed that the PCSK9 CT domain bound to the LBD at pH 5.4. Thus, CT domain interaction with the LBD of the LDLR at endosomal pH constitutes a second step in the PCSK9-mediated LDLR binding that leads to receptor degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号