首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Targeted mutagenesis of Tsix leads to nonrandom X inactivation.   总被引:10,自引:0,他引:10  
J T Lee  N Lu 《Cell》1999,99(1):47-57
During X inactivation, mammalian female cells make the selection of one active and one inactive X chromosome. X chromosome choice occurs randomly and results in Xist upregulation on the inactive X. We have hypothesized that the antisense gene, Tsix, controls Xist expression. Here, we create a targeted deletion of Tsix in female and male mouse cells. Despite a deficiency of Tsix RNA, X chromosome counting remains intact: female cells still inactivate one X, while male cells block X inactivation. However, heterozygous female cells show skewed Xist expression and primary nonrandom inactivation of the mutant X. The ability of the mutant X to block Xist accumulation is compromised. We conclude that Tsix regulates Xist in cis and determines X chromosome choice without affecting silencing. Therefore, counting, choice, and silencing are genetically separable. Contrasting effects in XX and XY cells argue that negative and positive factors are involved in choosing active and inactive Xs.  相似文献   

2.
The ratio of two differentially replicating alleles is not constant during S phase. Using this fact, we have developed a method for determining allele-specific replication timing for alleles differing by at least a single base pair. Unsynchronized cells in tissue culture are first sorted into fractions based on DNA content as a measure of position in S phase. DNA is purified from each fraction and used for PCR with primers that bracket the allelic difference, amplifying both alleles. The ratio of alleles in the amplified product is then determined by a single nucleotide primer extension (SNuPE) assay, modified as described [Singer-Sam,J. and Riggs,A.D. (1993) Methods Enzymol., 225, 344-351]. We report here use of this SNuPE-based method to analyze replication timing of two X-linked genes, Pgk-1 and Xist, as well as the autosomal gene Gabra-6. We have found that the two alleles of the Gabra-6 gene replicate synchronously, as expected; similarly, the active allele of the Pgk-1 gene on the active X chromosome (Xa) replicates early relative to the silent allele on the inactive X chromosome (Xi). In contrast, the expressed allele of the Xist gene, which is on the Xi, replicates late relative to the silent allele on the Xa.  相似文献   

3.
4.
In the present study we have analyzed X chromosome inactivation patterns in 40 women aged from 74 to 85 years (mean age 78 years). The control group was 36 women (mean age 30 years). The most common AR-assay was used to determine X-inactivation patterns (the study of methylation patterns of HpaII site in human androgen receptor gene (HUMARA) by quantative PCR). The age dependence of X-inactivation was not observed. We have detected skewed X-inactivation in three women among 40 (7.5%) elderly women comparing to two women among 36 (5.5%) women from control group. The difference was not found to be statistically significant. We made a suggestion that higher incidence of skewed X-inactivation in elderly women revealed by previous studies could occur due to some experimental ambiguities as heterogeneity of the group studied; inclusion of women having relatives with genetic abnormalities associated with skewed X-inactivation patterns; the difference of X chromosome inactivation skewing determination. We conclude that present study does not show X chromosome inactivation to be age dependent.  相似文献   

5.
6.
7.
8.
In early mammalian development, one of the two X chromosomes is silenced in each female cell as a result of X chromosome inactivation, the mammalian dosage compensation mechanism. In the mouse epiblast, the choice of which chromosome is inactivated is essentially random, but can be biased by alleles at the X-linked X controlling element (Xce). Although this locus was first described nearly four decades ago, the identity and precise genomic localization of Xce remains elusive. Within the X inactivation center region of the X chromosome, previous linkage disequilibrium studies comparing strains of known Xce genotypes have suggested that Xce is physically distinct from Xist, although this has not yet been established by genetic mapping or progeny testing. In this report, we used quantitative trait locus (QTL) mapping strategies to define the minimal Xce candidate interval. Subsequent analysis of recombinant chromosomes allowed for the establishment of a maximum 1.85-Mb candidate region for the Xce locus. Finally, we use QTL approaches in an effort to identify additional modifiers of the X chromosome choice, as we have previously demonstrated that choice in Xce heterozygous females is significantly influenced by genetic variation present on autosomes (Chadwick and Willard 2005). We did not identify any autosomal loci with significant associations and thus show conclusively that Xce is the only major locus to influence X inactivation patterns in the crosses analyzed. This study provides a foundation for future analyses into the genetic control of X chromosome inactivation and defines a 1.85-Mb interval encompassing all the major elements of the Xce locus.  相似文献   

9.
We have analysed Xist expression patterns in parthenogenetic and control fertilised preimplantation embryos by using RNA FISH. In normal XX embryos, maternally derived Xist alleles are repressed throughout preimplantation development. Paternal alleles are expressed as early as the 2-cell stage. In parthenogenetic embryos, we observed Xist RNA expression and accumulation from the morula stage onwards, indicating loss of maternal imprinting. In the majority of cells, expression was from a single allele, indicating that X chromosome counting occurs to establish appropriate monoallelic Xist expression. We discuss these data in the context of models for regulation of imprinted and random X inactivation.  相似文献   

10.
11.
Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes.  相似文献   

12.
13.
The X chromosome inactivation pattern in peripheral blood cells becomes more skewed after age 55, and a genetic effect on this age-related skewing has been reported. We investigated the effect of age on X inactivation phenotype in blood, buccal cells and tissue from duodenal biopsies in 80 females aged 19-90 years. The X inactivation pattern correlated positively with age in blood (r = 0.238, P = 0.034) and buccal cells (r = 0.260, P = 0.02). The mean degree of skewing was higher in the elderly (>/=55 years) than in the young (<55 years) in blood (70.1 and 63.5%, respectively, P = 0.013) and in buccal cells (64.7 and 59.0%, respectively, P = 0.004). Correlation of X inactivation between the different tissues was high in all tissues with a tendency to increase with age for blood and buccal cells (P = 0.082). None of the duodenal biopsies had a skewed X inactivation, and the mean degree of skewing was similar in the two age groups. The tendency for the same X chromosome to be the preferentially active X in both blood and buccal cells with advancing age is in agreement with a genetic effect on age-related skewing and indicates that genes other than those involved in hematopoiesis should be investigated in the search for genes contributing to age related skewing.  相似文献   

14.
15.
Nuclear transfer ES (ntES) cells are established from cloned blastocysts generated by somatic cell nuclear transfer and are expected to be an important resource for regenerative medicine. However, cloned mammals, generated by similar methods, show various abnormalities, which suggest disordered gene regulation. Random X chromosome inactivation (XCI) has been observed to take place in cloned female mouse embryos, but XCI does not necessarily occur according to Xce strength, a genetic element that determines the likelihood of each X chromosome to be inactivated. This observation suggests incomplete reprogramming of epigenetic marks related to XCI. Here, we investigated XCI in ntES cell lines, which were established using differentiated embryoid bodies that originated from a female mouse ES cell line. We examined Xist RNA localization, histone modifications in the Xist locus, and XCI choice. We did not find substantial differences between the ntES lines and their parental ES line. This suggests that the Xist locus and the epigenetic marks involved in XCI are reprogrammed by nuclear transfer and subsequent ntES cell establishment. In contrast to skewed XCI in cloned mice, our observations indicate that normal XCI choice takes place in ntES cells, which supports the goal of safe therapeutic cloning for clinical use.  相似文献   

16.
X chromosome inactivation takes place in the early development of female mammals and depends on the Xist gene expression. The mechanisms of Xist expression regulation have not been well understood so far. In this work, we compared Xist promoter region of vole Microtus rossiaemeridionalis and other mammalian species. We observed three conserved regions which were characterized by computational analysis, DNaseI in vitro footprinting, and reporter construct assay. Regulatory factors potentially involved in Xist activation and repression in voles were determined. The role of CpG methylation in vole Xist expression regulation was established. A CTCF binding site was found in the 5' flanking region of the Xist promoter on the active X chromosome in both males and females. We suggest that CTCF acts as an insulator which defines an inactive Xist domain on the active X chromosome in voles.  相似文献   

17.
We have begun a search for heritable variation in X-chromosome inactivation pattern in normal females to determine whether there is a genetic effect on the imprinting of X-chromosome inactivation in humans. We have performed a quantitative analysis of X-chromosome inactivation in lymphocytes from mothers in normal, three-generation families. Eight mothers and 12 grandmothers exhibited evidence of highly skewed patterns of X-chromosome inactivation. We observed that the male offspring of females with skewed X-inactivation patterns were three times more likely to inherit alleles at loci that were located on the inactive X chromosome (Xi) than the active X chromosome (Xa). The region of the X chromosome for which this phenomenon was observed extends from XP11 to -Xq22. We have also examined X-chromosome inactivation patterns in 21 unaffected mothers of male bilateral sporadic retinoblastoma patients. Six of these mothers had skewed patterns of X-chromosome inactivation. In contrast to the tendency for male offspring of skewed mothers from nondisease families to inherit alleles from the inactive X chromosome, five of the six affected males inherited the androgen receptor alleles from the active X chromosome of their mother. © 1995 Wiley-Liss, Inc.  相似文献   

18.
19.
20.
X. Montagutelli  R. Turner    J. H. Nadeau 《Genetics》1996,143(4):1739-1752
Strong deviation of allele frequencies from Mendelian inheritance favoring Mus spretus-derived alleles has been described previously for X-linked loci in four mouse interspecific crosses. We reanalyzed data for three of these crosses focusing on the location of the gene(s) controlling deviation on the X chromosome and the genetic basis for incomplete deviation. At least two loci control deviation on the X chromosome, one near Xist (the candidate gene controlling X inactivation) and the other more centromerically located. In all three crosses, strong epistasis was found between loci near Xist and marker loci on the central portion of chromosome 2. The mechanism for this deviation from Mendelian expectations is not yet known but it is probably based on lethality of embryos carrying particular combinations of alleles rather than true segregation distortion during oogenesis in F(1) hybrid females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号