首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of ammonia and changes in the contents of free amino acids have been investigated in slices of guinea pig cerebral cortex incubated under the following conditions: (1) aerobically in glucose-free saline; (2) aerobically in glucose-free saline containing 10 mM-bromofuroic acid, an inhibitor of glutamate dehydrogenase (EC 1.4.1.2); (3) aerobically in saline containing 11-1 mM-glucose and (4) anaerobically in glucose-free saline. Ammonia was formed at a steady rate aerobically in glucose-free medium. The formation of ammonia was largely suppressed in the absence of oxygen or in the presence of glucose whereas the inhibitor of glutamate dehydrogenase produced about 50 per cent inhibition. Other inhibitors of glutamate dehydrogenase exerted a similar effect. Ammonia formation was also inhibited by some inhibitors of aminotransferases but not by others. Inhibition was generally more pronounced during the second and third hour of incubation. With the exception of glutamine which decreased slightly, the contents of all amino acids increased markedly during the anaerobic incubation. During aerobic incubation in a glucose-free medium, there was an almost complete disappearance of glutamic acid and GABA. Glutamine also decreased, but to a relatively smaller extent. The content of all other amino acids increased during aerobic incubation in glucose-free medium, although to a lesser extent than under anaerobic conditions. The greater increase of amino acids appearing anaerobically in comparison to the increase or decrease occurring under aerobic conditions corresponded closely to the greater amount of ammonia formed aerobically over that formed anaerobically. This finding is interpreted as indicating a similar degree of proteolysis under anaerobic and aerobic conditions; aerobically, the amino acids are partly metabolized with the concomitant liberation of ammonia. In glucose-supplemented medium, the content of glutamine was markedly increased. The content of glutamate and aspartate remained unchanged, whereas that of some other amino acids increased but to a lesser extent than in the absence of glucose. Proteolysis in the presence of glucose was estimated at about 65 per cent of that in its absence. In the presence of bromofuroate the rate of disappearance of glutamate was unchanged, but there was a larger increase in the content of aspartate and a smaller decrease of GABA and glutamine. Other changes did not differ significantly from those observed in the absence of bromofuroate. We conclude that the metabolism of amino acids in general and of glutamic acid in particular differs according to whether they are already present within the brain slice or are added to the incubation medium. Only the endogenous amino acids appear to be able to serve as precursors of ammonia and as substrates for energy production.  相似文献   

2.
Abstract– The effect of the administration of l -DOPA plus an inhibitor of peripheral l -aromatic amino acid decarboxylase (aromatic-l -amino-acid carboxy-lyase; EC 4.1.1.28) on the metabolism of glucose in brain was studied by administering [U-I4C]glucose (20μCi) to three groups of rats: (1) rats that had been injected with l -DOPA (200mg/kg) 28min earlier; (2) rats that had been similarly injected with l -DOPA and also with N-(d,l -seryl)-N′-(2,3,4-trihydroxybenzyl)hydrazine (50 mg/kg), an inhibitor of l -aromatic amino acid decarboxylase, 30min before the l -DOPA; and (3) appropriate controls. The flux of 14C from glucose in plasma to those amino acids that are in equilibrium with the tricarboxylic acid cycle intermediates was reduced by treatment with l -DOPA and reduced further by treatment with l -DOPA and the decarboxylase inhibitor. Concentrations of glucose in brain and in plasma were increased after treatment with l -DOPA; these increases were attenuated if the inhibitor was given before the l -DOPA. After treatment with l -DOPA, there were decreases in the concentration of aspartate, tryptophan, and tyrosine in brain. After the administration of l -DOPA and the decarboxylase inhibitor, the concentrations in brain of alanine, glutamate, tyrosine, and phenylalanine were greater, and the concentrations of aspartate, leucine, lysine, histidine, arginine, and tryptophan were less than in control rats.  相似文献   

3.
Abstract– We have determined the incorporation of [3H]-, [1-14C]- and [2-14C]acetate into glutamate, glutamine and aspartate of the adult mouse brain. All these three acetates were incorporated more extensively into glutamine than into glutamate. This has been reported by several authors for each of these labelled acetates in separate experiments. It was shown that [3H, 2-14C]acetate can be used to obtain an acetate labelling ratio analogous to the previously used [2-14C]acetate/[1-14C]acetate labelling ratio. From these acetate labelling ratios of glutamine and glutamate conclusions can be deduced about the dynamic relationship of these amino acids with each other and with the tricarboxylic acid cycle.
A fairly large isotope effect between acetate and glutamate was observed. As this isotope effect is very likely caused by the citrate synthase reaction, it can be argued that citrate synthase involved in the conversion of labelled acetate into glutamate is far out of equilibrium in vivo. Comparing our data with literature data, the possibility can be suggested that citrate synthase in the acetate metabolizing compartment is in situ kinetically distinct from citrate synthase in other compartments of the brain.  相似文献   

4.
Incubation of brain cell suspensions with 14 mM-phenylalanine resulted in rapid alterations of amino acid metabolism and protein synthesis. Both thc rate of uptake and the final intracellular concentration of several radioactively-labelled amino acids were decreased by high concentrations oi phenylalanine. By prelabelling cells with radioactive amino acids, phenylalanine was also shown to effect a rapid loss of the labelled amino acids from brain cells. Amino acid analysis after the incubation of the cells with phenylalanine indicated that several amino acids were decreased in their intracellular concentrations with effects similar to those measured with radioisotopic experiments (large neutral > small and large basic > small neutral > acidic amino acids). Although amino acid uptake and efflux were altered by the presence of 14 mwphenylalanine, little or no alteration was detected in the resulting specific activity of the intracellular amino acids. High levels of phenylalanine did not significantly altcr cellular catabolism of either alanine, lysine, leucine or isoleucine. As determined by the isolation of labcllcd aminoacyl-tRNA from cells incubated with and without phenylalanine, there was little or no alteration in the level of this precursor for radioactive alanine and lysine. There was, however, a detectable decrease in thc labelling of aminoacyl-tRNA for leucine and isoleucine. Only aftcr correcting for the changes of the specific activity of the precursors and thcir availability to translational events, could the effects of phenylalanine on protein synthesis be established. An inhibition of the incorporation into protein for each amino acid was approximately 20%.  相似文献   

5.
Abstract— δ-Aminolaevulinic acid (δ-ALA) is an omega amino acid structurally similar to γ-aminobutyric acid (GABA) and l -glutamate. We have examined the effect of δ-ALA on the uptake and efflux of radiolabelled GABA and l -glutamate in rat cortical synaptosomes and report: (1) low concentrations of δ-ALA reduced the potassium-stimulated release of [3H]GABA from the synaptosome preparation. This effect was reversed by the GABA receptor antagonist bicuculline. We postulate that GABA release is modulated by a feedback mechanism on presynaptic GABA receptors, and that δ-ALA has agonist activity at these receptors. (2) δ-ALA at high concentrations (0.75-5.0 m m ) stimulated the efflux of l -[14C]glutamate from preloaded synaptosomes. (3) δ-ALA had no effect on potassium-stimulated release of l -glutamate. (4) Uptake of labelled l -glutamate was inhibited by δ-ALA in a noncompetitive fashion. (5) Synaptosomes did not accumulate [14C]δ-ALA in the range 0.5-50 δ m . These results are discussed in relation to the control of GABA release from nerve endings, and the role of δ-ALA in the neuropsychiatric manifestations of the acute porphyric attack.  相似文献   

6.
Abstract— Rats chronically treated with a high oral load of MnCl2 showed decreased concentrations of dopamine and HVA in brain. A return to normal values was observed after l -DOPA injections. This suggests a disturbance in catecholamine metabolism after chronic manganese administration possibly at the level of l -tyrosine hydroxylase.  相似文献   

7.
—Rat pups undernourished through 21 days of age show abnormal patterns of cerebral amino acid metabolism. The pattern of incorporation of radioactivity from l -[U-14C]leucine into amino acids derived from tricarboxylic acid cycle intermediates was altered, with significantly more 14C being incorporated into glutamate and aspartate in the underfed rats than in controls. Glutamate compartmentation, manifested in the ratio of specific radioactivities of glutamine to glutamate, developed more slowly in the. diet-restricted group. These results are similar to those seen in neonatally-thyroidectomized rats and suggest decreased growth of neuronal processes. This impairment of amino acid metabolism returns to normal after a 7-week period of adequate nutrition.  相似文献   

8.
The effects of chronic administration of clorgyline and pargyline on rat brain monoamine metabolism have been examined. The inhibitory selectivity of these drugs towards serotonin deamina-tion (MAO type A) and phenylethylamine deamination (MAO type B) can be maintained over a 21-day period by proper selection of low doses of these drugs (0.5-1.0 mg/kg/24h). The results are consistent with MAO type A catalyzing the deamination of serotonin and norepinephrine and with MAO type B having little effect on these monoamines. Dopamine appears to be dcaminated in vivo principally by MAO type A. Clorgyline administration during a 3-week period was accompanied by persistent elevations in brain norepinephrine concentrations; serotonin levels were also increased during the first 2 weeks, but returned towards control levels by the third week of treatment. Low doses of pargyline did not increase brain monoamine concentrations, but treatment with higher doses for 3 weeks led to elevations in brain norepinephrine and 5-hydroxytryptamine; at this time significant MAO-A inhibition had developed. The changes in monoamine metabolism seen at the end of the chronic clorgyline regimen are not due to alterations in tryptophan hydroxylase activity. At this time tyrosine hydroxylase activity was also unaffected.  相似文献   

9.
10.
11.
AMINO ACID METABOLISM OF SALMONELLAE   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

12.
13.
Abstract— Stimulation (AES) of the brachial plexus of anaesthetised rats resulted in an increased incorporation of carbon from [U-14C]glucose into TCA-insoluble proteins in the contralateral cerebral hemisphere, as compared with the ipsi-lateral hemisphere. The greatest change was observed in the sensori-motor cortex grey matter.
Following intraventricular injections of [U-14C]glucose, the changes caused by brachial plexus stimulation were variable, depending on which hemisphere received the label. The injection itself severely inhibited the incorporation into protein. Neither the injection, nor stimulation affected the conversion of [U-14C]glucose into amino acids or its relative distribution between the two hemispheres.  相似文献   

14.
15.
Abstract— (1) The sum of the values of total (tissue + medium) amino acid-N of glutamate, glutamine, γ-aminobutyrate, and aspartate (referred to as the glutamate system) and of ammonia-N of incubated rat brain cortex slices is approximately constant under a variety of metabolic conditions (presence or absence of glucose or of oxygen or in the presence of metabolic inhibitors such as aminooxyacetate, malonate, methionine sulfoximine, fluoroacetate, ouabain, 2:4 dinitrophenol, or Amytal). Fluctuations in the value of one constituent are compensated by fluctuations in the values of other constituents. The same applies to infant rat brain cortex slices and to rat brain synaptosome preparations. It is suggested that the constancy of the glutamate-ammonia system implies a coupling of neurons and glia in such a manner that glutamate released from the neurons during excitation is taken up by the glia and there converted to glutamine. The glutamine is returned to the neurons where it is hydrolysed to glutamate and ammonia. The glia, on this view, exercise an important buffering effect on the extracellular content of the excitatory amino acid, glutamate, and possibly on that of other functionally active amino acids emanating from the neurons. (2) The magnitude of the glutamate-ammonia system in the infant rat brain cortex is about 43% of that in the adult. It is suggested that, with maturity, the development of the glutamate-ammonia system is linked with the development of the citric acid cycle of operations. (3) The ammonia in the system is tightly linked to the activity of the ATP-controlled glutamine synthetase. (4) Proteolytic ammonia and amino acids are formed, during the incubation, to values that seem to be independent of a wide variety of metabolic conditions. The total value is approximately 10 μmol/g in the first h of incubation. (5) As the ammonium ion is necessary for the return of glutamate to the neuron in the form of glutamine, it is inferred that the ion plays a functional role in the nervous system by helping to maintain the steady state of glutamate in the neuron.  相似文献   

16.
17.
Brain cortex slices from fed, 48 h and 120 h fasted rats were incubated and 14CO2 was measured from (a) [U-14C]glucose (5 mm ) either alone or in the presence of l -lcucine (0.1 or 1 mm ), and (b) [U-14C]leucine or [l-14C]leucine at 0.1 or 1 mm with or without glucose (5 mm ). In other experiments, sodium dl -3-hydroxybutyrate (3-OHB) or acetoacetate (AcAc) at 1 or 5 mm were added in the above incubation mixture. The rate of conversion of [U14C]glucose to CO2 was decreased 20% by leucine at 1 mm and 30–50% by 3-OHB at 1 or 5 mm but not by leucine at 0.1 mm . The effects of 3-OHB and of leucine (1 mm ) were not additive. The effects of leucine were similar in the fed and fasted rats. The rate of conversion of [U-14C]leucine or [l-,4C]leucine to 14CO2 at 0.1 mm and 1.0 mm was increased by glucose (35%) in the fed or fasted rats. Ketone bodies in the absence of glucose had no effect on leucine oxidation. However, the stimulatory effect of glucose on the rate of conversion of leucine to CO2 was inhibited by 3-OHB at 5 mm . These results suggest that (a) leucine in increased concentrations (1 mm ) may reduce glucose oxidation by brain cortex while itself becoming an oxidative fuel for brain, and (b) leucine oxidation by brain may be influenced by the prevailing glucose and ketone concentrations.  相似文献   

18.
  • 1 Slices of mouse brain were incubated with [U-14C]alanine, valine, leucine, phenylalanine, proline, histidine, lysine, arginine or aspartic acid, and the extent of metabolism was estimated by analyses utilizing paper chromatography of the tissue extracts and with an amino acid analyser.
  • 2 The metabolism of Ala and Asp was high; of Leu and Pro, moderate; and of Lys, Arg and Phe, low; the metabolism of Val and His was not significant. The time-course of metabolism in most cases showed varying rates, indicating heterogeneous metabolic compartments for the amino acids.
  • 3 Production of CO2 was high from Asp, moderate from Ala, and low from Leu; the other amino acids were not oxidized to CO2 to any significant extent. A large portion of the metabolized label was trapped in the form of Glu or Asp.
  • 4 Metabolism increased with increasing concentration of amino acid to some extent and was largely inhibited by omission of glucose, by anaerobic conditions, or by cyanide. Although these conditions also inhibit uptake, the time-course and extent of inhibition uptake and metabolism were different.
  • 5 With Asp, Ala and Phe, metabolism was lowest in slices from pons-medulla; the brain area exhibiting the highest metabolism differed for each amino acid. The metabolism of Asp was lower in brain samples from newborn than in those from adults; the metabolism of Leu was higher in slices from newborn brain.
  • 6 The results indicate that the majority of the amino acids can be metabolized in brain tissue and that the metabolic rates are influenced by a number of factors, among them the level of amino acids and the level of available energy.
  相似文献   

19.
—The enzymatic decarboxylation of l -DOPA was measured in isotonic dextrose homogenates of different regions of the human brain by estimating 14CO2 evolved from tracer amounts of d l -DOPA[carboxy1-14C]. Enzyme activity was linear with respect to tissue concentration and time of incubation. The reaction exhibited a pH maximum at 7·0, was completely dependent upon the presence of high concentrations of pyridoxal phosphate, proceeded at the same rate in an atmosphere of air and nitrogen, and produced dopamine in addition to CO2 as a reaction product. The enzyme preparation behaved like an aromatic l -amino acid decarboxylase: it also decarboxylated o-tyrosine and when incubated with 5-hydroxytryptophan, serotonin was isolated as the reaction product; but it was devoid of activity towards d -DOPA[carboxy1-14C]. Within the human brain, l -DOPA decarboxylase was most active in the putamen and caudate nucleus; the pineal gland, hypothalamus, and the reticular formation and dorsal raphe areas of the mesencephalon exhibited considerable activity. Areas of cerebral cortex exhibited very low enzymatic activity and in regions composed predominantly of white matter, l -DOPA decarboxylase activity was not significantly above blank values. The activity of l -DOPA decarboxylase in the human putamen and caudate nucleus tended to decrease with the age of the patients; in comparatively young subjects (46 yr old) the enzyme activity compared favourably with that found, by means of the same assay technique, in the caudate nucleus of the cat.  相似文献   

20.
(1) The in vitro metabolism of [U-14C]glucose and [U-14C]glutamate was compared in snail, octopus and locust ganglia, and in rat cerebral cortex. (2) The metabolic patterns are quantitatively similar. The major labelled metabolites formed from glucose or glutamate by rat cortex and the invertebrate systems were CO2, aspartate, glutamate, glutamine and alanine. γ-Aminobutyric acid (GABA) was formed in substantial amounts only by locust and rat. (3) A much larger proportion of labelled glucose and glutamate was converted to alanine by the invertebrates compared with rat cortex, although 14CO2 production was lower. (4) The effect of glucose in reducing aspartate formation and stimulating glutamine formation from [U-14C]glutamate in mammalian cortex was observed in the locust but not in the molluscs. (5) Labelled citric acid cycle intermediates were formed in substantial quantities from glucose and glutamate only by snail and locust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号