共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of RBL-2H3 m1 mast cells through the IgE receptor with antigen, or through a G protein-coupled receptor with carbachol, leads to the rapid appearance of phosphothreonine in nonmuscle myosin heavy chain II-A (NMHC-IIA). We demonstrate that this results from phosphorylation of Thr-1940 by calcium/calmodulin-dependent protein kinase II (CaM kinase II), activated by increased intracellular calcium. The phosphorylation site in rodent NMHC-IIA was localized to the carboxyl terminus of NMHC-IIA distal to the coiled-coil region, and identified as Thr-1940 by site-directed mutagenesis. A fusion protein containing the NMHC-IIA carboxyl terminus was phosphorylated by CaM kinase II in vitro, while mutation of Thr-1940 to Ala eliminated phosphorylation. In contrast to rodents, in humans Thr-1940 is replaced by Ala, and human NMHC-IIA fusion protein was not phosphorylated by CaM kinase II unless Ala-1940 was mutated to Thr. Similarly, co-transfected Ala --> Thr-1940 human NMHC-IIA was phosphorylated by activated CaM kinase II in HeLa cells, while wild type was not. In RBL-2H3 m1 cells, inhibition of CaM kinase II decreased Thr-1940 phosphorylation, and inhibited release of the secretory granule marker hexosaminidase in response to carbachol but not to antigen. These data indicate a role for CaM kinase stimulation and resultant threonine phosphorylation of NMHC-IIA in RBL-2H3 m1 cell activation. 相似文献
2.
M G Tansey R A Word H Hidaka H A Singer C M Schworer K E Kamm J T Stull 《The Journal of biological chemistry》1992,267(18):12511-12516
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle. 相似文献
3.
A direct degranulation assay has been developed to enable the use of RBL mast cells as a biosensor for screening chemical libraries for drug discovery and environmental toxicity evaluation. Release of beta-hexosaminidase into the extracellular milleu is widely used to characterize cellular components and mechanisms involved in stimulated exocytosis, including those initiated by crosslinking of IgE receptors on mast cells. To adapt this versatile assay for high throughput screening, we developed a direct, in situ method in which beta-hexosaminidase detection is carried out in a single step, convenient for multi-sample processing and thus for biosensor applications. This direct assay is efficient for measuring exocytosis in antigen-stimulated RBL mast cells, detecting antigen concentrations as low as 1 pM. We also demonstrate its utility in detecting inhibition of degranulation by a known pharmacologic inhibitor that blocks Syk tyrosine kinase activity critical for cell activation. 相似文献
4.
Choi HS Choi BY Cho YY Zhu F Bode AM Dong Z 《The Journal of biological chemistry》2005,280(14):13545-13553
The mitogen-activated protein kinase cascades elicit modification of chromatin proteins such as histone H3 by phosphorylation concomitant with gene activation. Here, we demonstrate for the first time that the mixed lineage kinase-like mitogen-activated protein triple kinase (MLTK)-alpha phosphorylates histone H3 at Ser28. MLTK-alpha but neither a kinase-negative mutant of MLTK-alpha nor MLTK-beta interacted with and phosphorylated histone H3 in vivo and in vitro. When overexpressed in 293T or JB6 Cl41 cells, MLTK-alpha phosphorylated histone H3 at Ser28 but not at Ser10. The interaction between MLTK-alpha and histone H3 was enhanced by stimulation with ultraviolet B light (UVB) or epidermal growth factor (EGF), which resulted in the accumulation of MLTK-alpha in the nucleus. UVB- or EGF-induced phosphorylation of histone H3 at Ser28 was not affected by PD 98059, a MEK inhibitor, or SB 202190, a p38 kinase inhibitor, in MLTK-alpha-overexpressing JB6 Cl41 cells. Significantly, UVB- or EGF-induced phosphorylation of histone H3 at Ser28 was blocked by small interfering RNA of MLTK-alpha. The inhibition of histone H3 phosphorylation at Ser28 in the MLTK-alpha knock-down JB6 Cl41 cells was not due to a defect in mitogen- and stress-activated protein kinase 1 or 90-kDa ribosomal S6 kinase (p90RSK) activity. In summary, these results illustrate that MLTK-alpha plays a key role in the UVB- and EGF-induced phosphorylation of histone H3 at Ser28, suggesting that MLTK-alpha might be a new histone H3 kinase at the level of mitogen-activated protein kinase kinase kinases. 相似文献
5.
Identification of the serine residue phosphorylated by protein kinase C in vertebrate nonmuscle myosin heavy chains 总被引:8,自引:0,他引:8
Two-dimensional mapping of the tryptic phosphopeptides generated following in vitro protein kinase C phosphorylation of the myosin heavy chain isolated from human platelets and chicken intestinal epithelial cells shows a single radioactive peptide. These peptides were found to comigrate, suggesting that they were identical, and amino acid sequence analysis of the human platelet tryptic peptide yielded the sequence -Glu-Val-Ser-Ser(PO4)-Leu-Lys-. Inspection of the amino acid sequence for the chicken intestinal epithelial cell myosin heavy chain (196 kDa) derived from cDNA cloning showed that this peptide was identical with a tryptic peptide present near the carboxyl terminal of the predicted alpha-helix of the myosin rod. Although other vertebrate nonmuscle myosin heavy chains retain neighboring amino acid sequences as well as the serine residue phosphorylated by protein kinase C, this residue is notably absent in all vertebrate smooth muscle myosin heavy chains (both 204 and 200 kDa) sequenced to date. 相似文献
6.
Rat brain type II (beta) protein kinase C (PKC) was phosphorylated by rat lung casein kinase II (CK-II). Neither type I (gamma) nor type III (alpha) PKC was significantly phosphorylated by CK-II. CK-II incorporated 0.2-0.3 mol of phosphate into 1 mol of type II PKC. This phosphate was located at the single seryl residue (Ser-11) in the V1-variable region of the regulatory domain of the PKC molecule. A glutamic acid cluster was located at the carboxyl-terminal side of Ser-11, showing the consensus sequence for phosphorylation by CK-II. The velocity of this phosphorylation was enhanced by the addition of Ca2+, diolein, and phosphatidylserine, which are all required for the activation of PKC. Phosphorylation of casein or synthetic oligopeptides by CK-II was not affected by Ca2+, diolein, or phosphatidylserine. Available evidence suggests that CK-II phosphorylates preferentially the activated form of type II PKC. It remains unknown, however, whether this reaction has a physiological significance. 相似文献
7.
Suzuki Y Yoshimaru T Yamashita K Matsui T Yamaki M Shimizu K 《Biochemical and biophysical research communications》2001,283(3):707-714
There is a growing need to understand the impact of environmental sulfhydryl group-reactive heavy metals on the immune system. Here we show that Ag(+) induces mast cell degranulation, as does the aggregation of the high affinity immunoglobulin E receptor (FcepsilonRI). Micromolar quantities of Ag(+) specifically induced degranulation of mast cell model rat basophilic leukemia (RBL-2H3) cells without showing cytotoxicity. The Ag(+)-mediated degranulation could be observed as rapidly as 5 min after the addition of the ions. Ag(+) also induced a rapid change in tyrosine phosphorylation of multiple cellular proteins including the focal adhesion kinase but not Syk kinase. The Syk-selective inhibitor piceatannol and the Src family-selective tyrosine kinase inhibitor PP1 dose-dependently inhibited FcepsilonRI-mediated degranulation, whereas neither compound inhibited the Ag(+)-mediated degranulation. Furthermore, likewise FcepsilonRI aggregation, Ag(+) also induced leukotriene secretion. These results show that Ag(+) activates RBL-2H3 mast cells through a tyrosine phosphorylation-linked mechanism, which is distinct from that involved in FcepsilonRI-mediated activation. 相似文献
8.
Rah SY Park KH Nam TS Kim SJ Kim H Im MJ Kim UH 《The Journal of biological chemistry》2007,282(8):5653-5660
Activation of CD38 in lymphokine-activated killer (LAK) cells involves interleukin-8 (IL8)-mediated protein kinase G (PKG) activation and results in an increase in the sustained intracellular Ca(2+) concentration ([Ca(2+)](i)), cADP-ribose, and LAK cell migration. However, direct phosphorylation or activation of CD38 by PKG has not been observed in vitro. In this study, we examined the molecular mechanism of PKG-mediated activation of CD38. Nonmuscle myosin heavy chain IIA (MHCIIA) was identified as a CD38-associated protein upon IL8 stimulation. The IL8-induced association of MHCIIA with CD38 was dependent on PKG-mediated phosphorylation of MHCIIA. Supporting these observations, IL8- or cell-permeable cGMP analog-induced formation of cADP-ribose, increase in [Ca(2+)](i), and migration of LAK cells were inhibited by treatment with the MHCIIA inhibitor blebbistatin. Binding studies using purified proteins revealed that the association of MHCIIA with CD38 occurred through Lck, a tyrosine kinase. Moreover, these three molecules co-immunoprecipitated upon IL8 stimulation of LAK cells. IL8 treatment of LAK cells resulted in internalization of CD38, which co-localized with MHCIIA and Lck, and blebbistatin blocked internalization of CD38. These findings demonstrate that the association of phospho-MHCIIA with Lck and CD38 is a critical step in the internalization and activation of CD38. 相似文献
9.
Eukaryotic cells need morphological polarity to carry out chemotaxis (Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B., and Devreotes, P. N. (1998) Cell 95, 81-91; Jin, T., Zhang, N., Long, Y., Parent, C., and Devreotes, P. N. (2000) Science 287, 1034-1036; Servant, G., Weiner, O. D., Herzmark, P., Balla, T., Sedat, J. W., and Bourne, H. R. (2000) Science 287, 1037-1040), but sensing direction does not require polarization of chemoattractant receptors. When cells are exposed to a gradient of chemoattractant, activation occurs selectively at the stimulated edge. Such localized activation, transmitted by the recruitment of cytosolic proteins, may be a general mechanism for gradient sensing by G protein-linked chemotactic systems. Here we show that in Dictyostelium discoideum cells exposed to a cAMP gradient the myosin II heavy chain kinase (MHC-PKC) and myosin II translocate to opposite ends of the cell. We further show that MHC-PKC C1 domain is responsible for the localization of MHC-PKC to the cell leading edge, but it is not sufficient to promote cell polarization. Our findings suggest a mechanism by which MHC-PKC regulates myosin II, allowing cell polarization and movement in the direction of the cAMP source. 相似文献
10.
The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain 总被引:7,自引:5,他引:2 下载免费PDF全文
《The Journal of cell biology》1994,127(5):1361-1373
Inactivation of the Drosophila lethal(2)giant larvae (l(2)gl) gene causes malignant tumors in the brain and the imaginal discs and produces developmental abnormalities in other tissues, including the germline, the ring gland and the salivary glands. Our investigations into the l(2)gl function have revealed that the gene product, or p127 protein, acts as a cytoskeletal protein distributed in both the cytoplasm and on the inner face of lateral cell membranes in a number of tissues throughout development. To determine whether p127 can form oligomers or can stably interact with other proteins we have analyzed the structure of the cytosolic form of p127. Using gel filtration and immunoaffinity chromatography we found that p127 is consistently recovered as high molecular weight complexes that contain predominantly p127 and at least ten additional proteins. Blot overlay assays indicated that p127 can form homo-oligomers and the use of a series of chimaeric proteins made of segments of p127 fused to protein A, which alone behaves as a monomer, showed that p127 contains at least three distinct domains contributing to its homo-oligomerization. Among the proteins separated from the immuno-purified p127 complexes or isolated by virtue of their affinity to p127, we identified one of the proteins by microsequencing as nonmuscle myosin II heavy chain. Further blot overlay assay showed that p127 can directly interact with nonmuscle myosin II. These findings confirm that p127 is a component of a cytoskeletal network including myosin and suggest that the neoplastic transformation resulting from l(2)gl gene inactivation may be caused by the partial disruption of this network. 相似文献
11.
Thapsigargin, which elevates cytosolic calcium levels by inhibiting the sarcoplasmic/endoplasmic reticulum calcium-dependent ATPase, was tested for its ability to degranulate bone marrow-derived mast cells (BMMCs) from src homology 2-containing inositol phosphatase +/+ (SHIP+/+) and SHIP-/- mice. As was found previously with steel factor, thapsigargin stimulated far more degranulation in SHIP-/- than in SHIP+/+ BMMCs, and this was blocked with the phosphatidylinositol-3 (PI-3) kinase inhibitors, LY294002 and wortmannin. In contrast to steel factor, however, this heightened degranulation of SHIP-/- BMMCs was not due to a greater calcium influx into these cells, nor was the thapsigargin-induced calcium influx inhibited by LY294002, suggesting that the heightened thapsigargin-induced degranulation of SHIP-/- BMMCs was due to a PI-3 kinase-regulated step distinct from that regulating calcium entry. An investigation of thapsigargin-stimulated pathways in both cell types revealed that MAPK was heavily but equally phosphorylated. Interestingly, the protein kinase C inhibitor, bisindolylmaleimide (compound 3), totally blocked thapsigargin-induced degranulation in both SHIP+/+ and SHIP-/- BMMCs. As well, thapsigargin stimulated a PI-3 kinase-dependent, transient activation of protein kinase B, and this activation was far greater in SHIP-/- than in SHIP+/+ BMMCs. Consistent with this, thapsigargin was found to be a potent survival factor, following cytokine withdrawal, for both cell types and was more potent with SHIP-/- cells. These studies have both identified an additional PI-3 kinase-dependent step within the mast cell degranulation process, possibly involving 3-phosphoinositide-dependent protein kinase-1 and a diacylglycerol-independent protein kinase C isoform, and shown that the tumor-promoting activity of thapsigargin may be due to its activation of protein kinase B and subsequent promotion of cell survival. 相似文献
12.
Regulation of actin microfilament integrity in living nonmuscle cells by the cAMP-dependent protein kinase and the myosin light chain kinase 总被引:23,自引:22,他引:23 下载免费PDF全文
《The Journal of cell biology》1988,106(6):1955-1971
Microinjection of the catalytic subunit of cAMP-dependent protein kinase (A-kinase) into living fibroblasts or the treatment of these cells with agents that elevate the intracellular cAMP level caused marked alterations in cell morphology including a rounded phenotype and a complete loss of actin microfilament bundles. These effects were transient and fully reversible. Two-dimensional gel electrophoresis was used to analyze the changes in phosphoproteins from cells injected with A-kinase. These experiments showed that accompanying the disassembly of actin microfilaments, phosphorylation of myosin light chain kinase (MLCK) increased and concomitantly, the phosphorylation of myosin P- light chain decreased. Moreover, inhibiting MLCK activity via microinjection of affinity-purified antibodies specific to native MLCK caused a complete loss of microfilament bundle integrity and a decrease in myosin P-light chain phosphorylation, similar to that seen after injection of A-kinase. These data support the idea that A-kinase may regulate microfilament integrity through the phosphorylation and inhibition of MLCK activity in nonmuscle cells. 相似文献
13.
Phosphorylation of smooth muscle myosin light chain kinase by protein kinase C. Comparative study of the phosphorylated sites 总被引:7,自引:0,他引:7
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin. 相似文献
14.
Conventional myosins (myosin-IIs) generate forces for cell shape change and cell motility. Myosin heavy chain phosphorylation regulates myosin function in simple eukaryotes and may also be important in metazoans. To investigate this regulation in a complex eukaryote, we purified the Drosophila myosin-II tail expressed in Escherichia coli and showed that it was phosphorylated in vitro by protein kinase C(PKC) at serines 1936 and 1944, which are located in the nonhelical globular tail piece. These sites are close to a conserved serine that is phosphorylated in vertebrate, nonmuscle myosin-IIs. If the two serines are mutagenized to alanine or aspartic acid, phosphorylation no longer occurs. Using a 341 amino acid tail fragment, we show that there is no difference in the salt-dependent assembly of wild-type phosphorylated and mutagenized polypeptides. Thus, the nonmuscle myosin heavy chain in Drosophila, which is encoded by the zipper gene, appears to be similar to rabbit nonmuscle myosin-IIA. In vivo, we generated transgenic flies that expressed the various myosin heavy chain variants in a zipper null or near-null genetic background. Like their wild-type counterparts, such variants are able to completely rescue the lethal phenotype due to severe zipper mutations. These results suggest that while the myosin-II heavy chain can be phosphorylated by PKC, regulation by this enzyme is not required for viability in Drosophila. Conservation during 530-1000 million years of evolution suggests that regulation by heavy chain phosphorylation may contribute to nonmuscle myosin-II function in some real, but minor, way. 相似文献
15.
Novel myosin heavy chain kinase involved in disassembly of myosin II filaments and efficient cleavage in mitotic dictyostelium cells 下载免费PDF全文
We have cloned a full-length cDNA encoding a novel myosin II heavy chain kinase (mhckC) from Dictyostelium. Like other members of the myosin heavy chain kinase family, the mhckC gene product, MHCK C, has a kinase domain in its N-terminal half and six WD repeats in the C-terminal half. GFP-MHCK C fusion protein localized to the cortex of interphase cells, to the cleavage furrow of mitotic cells, and to the posterior of migrating cells. These distributions of GFP-MHCK C always corresponded with that of myosin II filaments and were not observed in myosin II-null cells, where GFP-MHCK C was diffusely distributed in the cytoplasm. Thus, localization of MHCK C seems to be myosin II-dependent. Cells lacking the mhckC gene exhibited excessive aggregation of myosin II filaments in the cleavage furrows and in the posteriors of the daughter cells once cleavage was complete. The cleavage process of these cells took longer than that of wild-type cells. Taken together, these findings suggest MHCK C drives the disassembly of myosin II filaments for efficient cytokinesis and recycling of myosin II that occurs during cytokinesis. 相似文献
16.
Hrs binding protein (Hbp) tightly associated with Hrs is thought to play a regulatory role in vesicular trafficking during endocytosis and exocytosis. In this study, we have expressed dominant-negative mutants of Hbp to evaluate their effects on the degranulation of secretory granules in RBL-2H3 mast cells. The dominant-negative mutants of Hbp significantly inhibited IgE receptor (FcepsilonRI)-triggered secretory response as tested by beta-hexosaminidase release. These results suggest that Hbp functions as a regulator in the FcepsilonRI-triggered degranulation of secretory granules in mast cells. 相似文献
17.
Ji JE Kim SK Ahn KH Choi JM Jung SY Jung KM Jeon HJ Kim DK 《Prostaglandins & other lipid mediators》2011,94(3-4):88-95
Ceramide has been suggested to function as a mediator of exocytosis in response to the addition of a calcium ionophore from PC12 cells. Here, we show that although cell-permeable C(6)-ceramide or a calcium ionophore alone did not increase either the degranulation of serotonin or the release of arachidonic acid (AA) from RBL-2H3 cells, their combined effect significantly stimulated these processes in a time- and dose-dependent manner. This effect was inhibited by the presence of an exogenous calcium chelator and significantly suppressed by the CERK inhibitor (K1) and phospholipase A(2) (PLA(2)) inhibitors. Moreover, cytosolic PLA(2) GIVA (cPLA(2) GIVA) siRNA-transfected RBL-2H3 cells showed a lower level of serotonin release than scramble siRNA-transfected cells. Little is known about the regulation of degranulation proximal to the activation of cytosolic phospholipase A(2) GIVA, the initial rate-limiting step in RBL-2H3 cells. In this study, we suggest that CERK, ceramide-1-phosphate, and PLA(2) are involved in degranulation in a calcium-dependent manner. Inhibition of p44/p42 mitogen-activated protein kinase partially decreased the AA release, but did not affect degranulation. Furthermore, treatment of the cells with AA (ω-6, C20:4), not linoleic acid (ω-6, C18:2) or α-linolenic acid (ω-6, C18:3), induced degranulation. Taken together, these results suggest that ceramide is involved in mast cell degranulation via the calcium-mediated activation of PLA(2). 相似文献
18.
Studies with transfected and permeabilized RBL-2H3 cells reveal unique inhibitory properties of protein kinase C gamma. 下载免费PDF全文
R A Baumgartner K Ozawa J R Cunha-Melo K Yamada F Gusovsky M A Beaven 《Molecular biology of the cell》1994,5(4):475-484
To characterize protein kinase C (PKC) gamma, an isozyme found exclusively in brain and spinal cord, its cDNA was introduced into basophilic RBL-2H3 cells that lack this isozyme. The expression of PKC gamma significantly attenuated antigen-induced responses including hydrolysis of inositol phospholipids, increase in cytosolic calcium, and secretion of granules but enhanced antigen-induced release of arachidonic acid. Instead of a sustained increase in cytosolic calcium, antigen now induced calcium oscillations; possibly as a consequence of suppression of the phospholipase C activity and incomplete emptying of internal calcium stores. In addition, PKC gamma appeared to inhibit activation of other PKC isozymes because phorbol 12-myristate 13-acetate failed to act synergistically with the Ca(2+)-ionophore on secretion. This was confirmed in other studies where PKC gamma was shown to suppress the transduction of stimulatory signals by other isozymes of PKC on provision of these isozymes to PKC-depleted permeabilized cells. The studies in total indicated that only PKC gamma was capable of inhibiting both early and distal signals for secretion including those signals transduced by endogenous isozymes of PKC. 相似文献
19.
An essential role for phospholipase D in the activation of protein kinase C and degranulation in mast cells 总被引:4,自引:0,他引:4
Activation of phospholipase D (PLD) and protein kinase C (PKC) as well as calcium mobilization are essential signals for degranulation of mast cells. However, the exact role of PLD in degranulation remains undefined. In this study we have tested the hypothesis that the PLD product, phosphatidic acid, and diacylglycerides generated therefrom might promote activation of PKC. Studies were conducted in two rodent mast cell lines that were stimulated with Ag via FcepsilonRI and a pharmacologic agent, thapsigargin. Diversion of production of phosphatidic acid to phosphatidylbutanol (the transphosphatidylation reaction) by addition of l-butanol suppressed both the translocation of diacylglyceride-dependent isoforms of PKC to the membrane and degranulation. Tertiary-butanol, which is not a substrate for the transphosphatidylation, had a minimal effect on PKC translocation and degranulation, and 1-butanol itself had no effect on PKC translocation when PKC was stimulated directly with phorbol ester, 12-O-tetradecanoylphorbol-13-acetate. Also, in cells transfected with small inhibitory RNAs directed against PLD1 and PLD2, activation of PLD, generation of diacylglycerides, translocation of PKC, and degranulation were all suppressed. Phorbol ester, which did not stimulate degranulation by itself, restored degranulation when used in combination with thapsigargin whether PLD function was disrupted with 1-butanol or the small inhibitory RNAs. However, degranulation was not restored when cells were costimulated with Ag and phorbol ester. These results suggested that the production of phosphatidic acid by PLD facilitates activation of PKC and, in turn, degranulation, although additional PLD-dependent processes appear to be critical for Ag-mediated degranulation. 相似文献
20.
Chen HT Mehan RS Gupta SD Goldberg I Shechter I 《Archives of biochemistry and biophysics》1999,364(2):203-208
Changes in farnesyl protein transferase (FPTase) activity and FPTase beta-subunit protein levels were determined in IgE-sensitized RBL-2H3 mast cells in response to polyvalent antigen administration. Ten minutes after the addition of DNP modified BSA to mast cells, whose high affinity receptor for IgE (FcvarepsilonRI) contained bound anti-DNP IgE, FPTase specific activity increased by 54 +/- 28%. Time course studies showed FPTase specific activity doubled during a 20- to 30-min period after antigen-induced cell aggregation. Also, an increase in FPTase beta-subunit protein during this time ( approximately 30%) was observed; this protein increase was not accompanied by a similar increase in FPTase beta-subunit m-RNA levels. The FcvarepsilonRI aggregation had no significant effect on the activities of other enzymes involved with farnesyl diphosphate (FPP) metabolism: FPP synthase, isopentenyl diphosphate isomerase, geranylgeranyl protein transferase, and squalene synthase. Specific inhibition of FPTase activity by manumycin was studied to determine what role FPTase plays in mast cell activation. Manumycin profoundly inhibited hexosaminidase release in activated cells, indicating FPTase is required for signal transduction involved with protein exocytosis from RBL-2H3 mast cells. 相似文献