首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain Carbohydrate Metabolism in Developing Rats During Hypercapnia   总被引:3,自引:2,他引:1  
Abstract: Brain glucose metabolism was studied in developing rats at ages 10 and 20 days postnatal under normal and hypercapnic conditions. Brains were removed and frozen within 1 s with a freeze-blowing apparatus. Glucose utilization was measured with [2-14C]glucose and [3H]deoxyglucose as tracers. Metabolites were determined by standard enzymatic techniques. Data from [3H]deoxyglucose phosphorylation indicated that normal brain glucose utilization increased almost threefold between the 10th and 20th postnatal days. From the relative rates of utilization of the two isotopes in the 20-day-old control group, it appeared that about 25% of 14C label derived from metabolism of [2-14C]glucose was lost from brain (probably as lactate) rather than entering the Krebs cycle. Under hypercapnic conditions (20% CO2-21% O2-59% N2), rates of glucose utilization by brain were decreased by one-half at both ages and there were progressive decreases in the concentrations of many intermediary metabolites. The bases for concluding that these metabolites were used to supplement glucose as a fuel for respiration, rather than being lost by leakage into blood, are discussed. Despite the differences in brain glucose metabolism between 10-day-old and 20-day-old rats, their responses to hypercapnia are remarkably similar: Rates of glucose utilization are reduced to approximately the same proportion of the original rate by 20% CO2, and endogenous metabolites (particularly glutamate and lactate) appear to be oxidized as replacement fuels.  相似文献   

2.
Abstract— –The rates of incorporation of 14C from [U-l4C]glucose into intermediary metabolites have been measured in rat brain in vivo. The time course of labelling of glycogen was similar to that of glutamate and of glucose, which were all maximally labelled between 20 and 40min, but different from lactate, which lost radioactivity rapidly after 20min. The extent of labelling of glycogen (d.p.m./ μ mol of glucose) was of the same order as that of glutamate at 20 and 40 min after injection of [14C]glucose. However, calculations of turnover rates showed that glutamate turns over some 8-10 times faster than glycogen. Insulin, intracisternally applied, produced after 4-5 h a 60 per cent increase in glucose-6-P and a 50 per cent increase in glycogen. There was no change in the levels of glucose, glutamate or lactate, nor in the activity or properties of the particulate and soluble hexokinase of the brain. The injection of insulin affected neither the glycogen nor glucose contents of skeletal muscle from the same animals. The effects of insulin on the incorporation of l4C into the metabolites contrasted with its effects on their levels. The specific activities of glycogen and glucose were unchanged and there was a slight but non-significant increase in the specific activity of glutamate. The time course of incorporation into lactate was unaffected up to 20 min, but a significant delay in the loss of 14C after 20 min occurred as a result of the insulin injection. At 40 min, the specific activity of cerebral lactate was 60 per cent higher in insulin-treated animals than in control animals. The results are interpreted in terms of an effect of insulin on glucose uptake to the brain, with possibly an additional effect on a subsequent stage in metabolism, which involves lactate.  相似文献   

3.
Abstract— The ischemia-induced change of brain extracellular potassium concentration [K+]e and brain energy metabolism was studied following decapitation of normal 7-dav-old rats and 7-day-old rats exposed to a simulated altitude of 6000 m ( p O2= 70 mm Hg) for 24 h. Initially there was in both groups a slow rate of rise of [K +]e followed by a faster rise until a steep increase occurred. In the group exposed to hypoxia the initial rate of rise was lower and the duration until the steep increase twice as long as in the normal group. Energy consumption expressed as Δ# P and the rates of lactate accumulation were similar in the two groups in the first minute following decapitation. After 2 min the Δ# P and the rate of lactate accumulation was higher in the group exposed to hypoxia. These findings are explained by a doubling of the glucose concentration in the brain of the rats exposed to hypoxia, permitting anaerobic glycolysis to maintain ATP regeneration for a longer time during ischemia.  相似文献   

4.
Abstract— [U-14C]Ribose was given by subcutaneous injection to young rats aged 2–56 days. During the first week after birth 14C in the brain was found mainly combined in glucose, fructose and sedoheptulose which contained 46–57 per cent of the 14C in the acid soluble metabolites in the rat brain. In contrast, during the critical period (10–15 days after birth) the 14C in the free sugars decreased from 24 to 3 per cent, while the 14C content of amino acids in the brain increased from 11 to 44 per cent of the total perchloric acid-soluble 14C. The increase in labelling of amino acids during the critical period was attributed to increased glycolysis and increased oxidation of pyruvate. The relative specific radioactivity of y -aminobutyrate and aspartate in the rat brain at 28 days after birth was equal to or greater than the relative specific radioactivity of glutamate. Assuming that the increase in amino acid content following the cessation of cell proliferation in the brain is located mainly in cell processes (cytoplasm of axons, dendrites, glial processes and nerve terminals), tentative values were estimated for the pool sizes of glutamate, glutamine, aspartate and y -amino butyrate.  相似文献   

5.
Abstract: Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36°C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1–10 m M ), lactate (1–10 m M ), [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U-14C]glucose, and glucose reduced that from [U-14C]lactate. When using uniformly labeled substrates in the presence of 5.5 m M glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was >2 m M . The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1-14C]glucose always exceeded that from [6-14C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.  相似文献   

6.
Brain metabolism of glucose and lactate was analyzed by ex vivo NMR spectroscopy in rats presenting different cerebral activities induced after the administration of pentobarbital, alpha-chloralose, or morphine. The animals were infused with a solution of either [1-(13)C]glucose plus lactate or glucose plus [3-(13)C]lactate for 20 min. Brain metabolite contents and enrichments were determined from analyses of brain tissue perchloric acid extracts according to their post-mortem evolution kinetics. When amino acid enrichments were compared, both the brain metabolic activity and the contribution of blood glucose relative to that of blood lactate to brain metabolism were linked with cerebral activity. The data also indicated the production in the brain of lactate from glycolysis in a compartment other than the neurons, presumably the astrocytes, and its subsequent oxidative metabolism in neurons. Therefore, a brain electrical activity-dependent increase in the relative contribution of blood glucose to brain metabolism occurred via the increase in the metabolism of lactate generated from brain glycolysis at the expense of that of blood lactate. This result strengthens the hypothesis that brain lactate is involved in the coupling between neuronal activation and metabolism.  相似文献   

7.
ACUTE HYPERCAPNIA AND BRAIN ENERGY STATE IN SUSTAINED HYPERAMMONAEMIA   总被引:1,自引:1,他引:0  
Abstract— The effect of acute hypercapnia upon the energy state of the brain in sustained hyperammonaemia was evaluated in lightly (N2O) anaesthetized rats. No significant changes occurred in the high energy phosphates (phosphocreatine, ATP, ADP, and AMP) despite a fourfold increase in the ammonia content and a 50 per cent reduction in the total α-ketoglutarate content. It is concluded that brain tissue maintains energy homeostasis in hypercapnic hyperammonaemia.  相似文献   

8.
Cerebral Metabolic State During the Ethanol Withdrawal Reaction in the Rat   总被引:2,自引:0,他引:2  
Abstract: A severe ethanol withdrawal reaction was induced in rats by means of repeated intragastric intubation during a 4-day period. At the peak of the withdrawal reaction cerebral cortical tissue was frozen in situ for analysis of glycogen, glucose, phosphocreatine, creatine, ATP, ADP, AMP, lactate, pyruvate, GAB A, β-hydroxybutyrate, acetoacetate, cAMP and cGMP. Blood glucose concentration was also measured. The level of brain glycogen was decreased during ethanol withdrawal. Brain glucose concentration was increased, probably secondary to the increase in blood glucose concentration. The calculated NADH/NAD+ ratio was slightly increased during the withdrawal and brain ATP concentration and adenine nucleotide pool size were decreased. The adenylate energy charge remained unchanged. The overall changes in the metabolites were in agreement with the previously shown metabolic activation during ethanol withdrawal. The brain concentrations of ketone bodies (β-hydroxybutyrate and acetoacetate) during withdrawal did not deviate from controls, indicating that no abnormal ketone metabolism had developed as a consequence of the long-lasting ethanol intoxication. No changes were observed in the concentrations of GABA, cAMP, or cGMP in the rat cerebral cortex during ethanol withdrawal.  相似文献   

9.
The conclusion from two in vivo experiments is that a significant proportion of the lactic acid, normally formed by glycolysis from glycogen and held in the muscle cells following exhausting exercise of the anaerobic swimming muscle of the teleost fish Pleuronectes platessa L, is converted by gluconeogenesis to form glycogen in the recovering muscle.
In the first experiment a technique for measurement of [3H]glucose turnover in the plaice was developed and applied to measure turnover in resting and exhausted fish. It is concluded that insufficient glucose was moved through the circulation to account for the rate of glycogen formation observed in the recovering exhausted muscle.
In the second experiment, an intramuscular injection of [14C]lactate to exhausted fish revealed a direct uptake of [14C]lactate by the recovering muscle cells, and the incorporation of substantial proportions of lactate into the restored glycogen. Simultaneous use of [3H]-mannitol allowed measurement of the isotope distribution between extra- and intracellular spaces.  相似文献   

10.
In order to study the influence of hypercapnia on the content of glutamate and glutamine in the developing brain, pregnant rats and their offspring were kept in CO2 rich (6-10%) atmosphere and the litters were killed at different ages between 4 and 28 days. In the hypercapnic rats the content of both amino acids in the brain increases with age with almost the same time course as in normocapnic rats. At any age the glutamate content is lower in the hypercapnic animals than in control rats, whereas the glutamine content, beyond the first 8 days of life is increased. Both effects are rapidly reversible on return to air breathing. Although the glutamate-glutamine system is in full development, the influence of hypercapnia can be compared to that observed in adult rats. Hypercapnia did not change the glutaminase and the glutamine synthetase activity of the brain.  相似文献   

11.
Plasma and tissue metabolite levels were measured in the air-breathing Channa maculata during acute and prolonged exposure to normoxic and hypoxic water. Exposure of the fish to hypoxic water (water oxygen partial pressure, PwO 2= 50 mmHg) for 1 h caused increases in plasma glucose and lactate, liver and brain lactate, liver a-amino acid, heart and brain alanine and brain succinate levels. The metabolic changes in heart, brain and muscle could only be detected when Pw O2 was 30 or 10 mmHg. Heart glycogen and liver lipid decreased during acute exposure. Prolonged exposure to hypoxic water ( Pw O2= 30 mmHg) for 3 days caused an increase in plasma glycerol and liver lactate dehydrogenase activity, and a depletion of glycogen store in all tissues investigated. However, metabolite levels which had been elevated during acute hypoxic exposure were observed to return to their normoxic values after prolonged exposure. It was concluded that anaerobic metabolism was triggered by acute exposure to hypoxic water. Prolonged exposure to hypoxic water induced a metabolic readjustment involving mobilisation of lipid and glycogen stores, which is probably a reflection of the high metabolic load of aerial respiration imposed on the fish during exposure to hypoxic water.  相似文献   

12.
Abstract— The energy state of brain tissue was evaluated from the tissue concentrations of ATP, ADP and AMP and the cytoplasmic NADH/NAD+ ratio from the tissue, CSF and blood concentrations of lactate and pyruvate, and from the intracellular pH', in rats exposed to carbon dioxide concentrations of 640 per cent. The hypercapnia had no significant effect on the energy state of the tissue. Hypercapnia of increasing severity gave rise to a progressive decrease in the pyruvate concentration; the lactate concentration fell at low CO2 concentrations, but no further decrease was observed at CO2 concentrations greater than 20 per cent. There was a progressive rise in the intracellular lactate/pyruvate ratio at increasing CO2 concentrations, corresponding to the fall in intracellular pH, i.e. the calculated NADH/NAD+ ratios remained normal. It is therefore concluded that hypercapnia does not affect the cytoplasmic redox state.  相似文献   

13.
Abstract— The incorporation of 14C into amino acids of the brain was determined at different times after injection of [U-14C]glucose and [U-14C]ribose to rats maintained on thiamine-supplemented and thiamine-deficient diets for 22 days.
The 14C-content of amino acids in the brain of thiamine-deficient rats decreased at times 2–10 min after injection of [U-14C]glucose. but it increased at 2 min and decreased at times 5–10 min after injection of [U-14C]ribose.
The results of labelling of amino acids indicated that the activities in vivo of the thiamine pyrophosphate requiring enzymes, pyruvate oxidase, a-oxoglutarate dehydrogenase and transketolase were similar in the two groups. It was suggested that the observed decrease in the labelling of amino acids was due to one or more of the following factors: (i) a decrease in the activities of glycolytic enzymes catalysing the conversion of glucose into triose phosphate; (ii) a decrease in the transport of substrate to the active site of the enzymes; or (iii) altered neurohistopathology of the brain.
Thiamine deficiency in rats showed a 5% decrease in glutamate ( P < 0–05), 46% decrease in threonine (P < 0001) and 16% increase in glycine ( P < 0–01) content of the brain.  相似文献   

14.
Abstract— The kinetics of the uptake from blood to brain of pyruvate, lactate and glucose have been determined in rats of different ages. The carotid artery single injection technique was used in animals anaesthetized with pentobarbital. The rates of influx for each substrate were determined over a range of concentrations for the different age-groups. Data were analysed in terms of the Michaelis-Menten equation with a component to allow for non-saturable diffusion. Values are given for K m, V max and K d. In suckling rats (15-21 days) the V max values for both pyruvate and lactate were 2.0 μmol g−1 min−1. In 28-day-old rats the V max values had fallen to one-half and in adults they were less than one-tenth. K m, values were higher in the younger animals. The rate of glucose transport in suckling rats was half that of 28-day-old and adults although there was no difference with age in the K m values.
The results are discussed in relation to the net flux of these substrates in and out of brain during different stages of post-natal development.  相似文献   

15.
Abstract: The present study was undertaken to explore how transient ischemia in rats alters cerebral metabolic capacity and how postischemic metabolism and blood flow are coupled during intense activation. After 6 h of recovery following transient forebrain ischemia 15 min in duration, bicuculline seizures were induced, and brains were frozen in situ after 0.5 or 5 min of seizure discharge. At these times, levels of labile tissue metabolites were measured, whereas the cerebral metabolic rate for oxygen (CMRO2) and cerebral blood flow (CBF) were measured after 5 min of seizure activity. After 6 h of recovery, and before seizures, animals had a 40–50% reduction in CMRO2, and CBF. However, because CMRO2 rose threefold and CBF fivefold during seizures, CMRO2 and CBF during seizures were similar in control and postischemic rats. Changes in labile metabolites due to the preceding ischemia encompassed an increased phosphocreatine/ creatine ratio, as well as raised glucose and glycogen concentrations. Seizures gave rise to minimal metabolic perturbation, essentially comprising reduced glucose and glycogen contents and raised lactate concentrations. It is concluded that although transient ischemia leads to metabolic depression and a fall in CBF, the metabolic capacity of the tissue is retained, and drug-induced seizures lead to a coupled rise in metabolic rate and blood flow.  相似文献   

16.
Abstract— (1) The effects of gamma-hydroxybutyrate, imidazole-4-acetic acid and pento-barbitone on mouse brain glucose, glycogen and lactate levels have been studied. All the drugs significantly increased the brain glucose content, but did not significantly alter brain glycogen levels. The increase in brain glucose following imidazole-4-acetic acid or hypnotic doses of pentobarbitone was matched by corresponding decreases in the lactate level; this was not the case with gamma-hydroxybutyrate where the total glucose equivalents in the brain, expressed as the tissue level of (glucose) + (lactate/2), were significantly increased.
(2) All drugs except imidazole-4-acetic acid significantly decreased the rate of appearance of [14C]glucose into the bloodstream in vivo but had no effect on the uptake of glucose into rat diaphragm in vitro when present at 2·5 mM concentration.
(3) Only imidazole-4-acetic acid significantly inhibited glucose uptake into the brain in vivo but at 2·5 mM had no significant effect on glucose uptake into rat cerebral cortical slices in vitro.
(4) It is concluded that the very large increase in brain glucose level observed following the injection of hypnotic doses of gamma-hydroxybutyrate cannot be explained in terms of an increased net uptake of glucose into the brain.  相似文献   

17.
In this research, two dynamic 13C-labeling experiments confirmed turnover and rapid mobilization of stored glycogen and trehalose in an aerobic glucose-limited chemostat ( D =0.05 h−1) culture of Saccharomyces cerevisiae . In one experiment, the continuous feed to an aerobic glucose-limited chemostat culture of S. cerevisiae was instantaneously switched from naturally labeled to fully 13C labeled while maintaining the same feed rate before and after the switch. The dynamic replacements of naturally labeled intracellular glycolytic intermediates and CO2 (in the off-gas) with their 13C-labeled equivalents were measured. The data of this experiment suggest that the continuous turnover of glycogen and trehalose is substantial ( c . 1/3 of the glycolytic flux). The second experiment combined the medium switch with a shiftup in the glucose feeding rate (dilution rate shiftup from 0.05 to 0.10 h−1). This experiment triggered a strong but transient mobilization of storage carbon, that was channelled into glycolysis, causing a significant disruption in the dynamic labeling profile of glycolytic intermediates. The off-gas measurements in the shiftup experiment confirmed a considerable transient influx of 12C-carbon into glycolysis after the combined medium switch and dilution rate shiftup. This study shows that for accurate in vivo kinetic interpretation of rapid pulse experiments, glycogen and trehalose metabolism must be taken into account.  相似文献   

18.
Abstract: Cerebral formation of lactate via the tricarboxylic acid (TCA) cycle was investigated through the labeling of lactate from [2-13C]acetate and [1-13C]glucose as shown by 13C NMR spectroscopy. In fasted mice that had received [2-13C]acetate intravenously, brain lactate C-2 and C-3 were labeled at 5, 15, and 30 min, reflecting formation of pyruvate and hence lactate from TCA cycle intermediates. In contrast, [1-13C]glucose strongly labeled lactate C-3, reflecting glycolysis, whereas lactate C-2 was weakly labeled only at 15 min. These data show that formation of pyruvate, and hence lactate, from TCA cycle intermediates took place predominantly in the acetate-metabolizing compartment, i.e., glia. The enrichment of total brain lactate from [2-13C]acetate reached ∼1% in both the C-2 and the C-3 position in fasted mice. It was calculated that this could account for 20% of the lactate formed in the glial compartment. In fasted mice, there was no significant difference between the labeling of lactate C-2 and C-3 from [2-13C]acetate, whereas in fed mice, lactate C-3 was more highly labeled than the C-2, reflecting adaptive metabolic changes in glia in response to the nutritional state of the animal. It is hypothesized that conversion of TCA cycle intermediates into pyruvate and lactate may be operative in the glial metabolism of extracellular glutamate and GABA in vivo. Given the vasodilating effect of lactate on cerebral vessels, which are ensheathed by astrocytic processes, conversion of glutamate and GABA into lactate could be one mechanism mediating increases in cerebral blood flow during nervous activity.  相似文献   

19.
Abstract— Abstract-Intracellular pH in the brain was evaluated by the bicarbonate-carbonic acid method and from the creatine phosphokinase equilibrium, in rats exposed to 6–40 % CO2 for 45 min. There was a very good agreement between the two methods, indicating that the creatine phosphokinase equilibrium in vivo shows the pH dependence predicted from previous in vitro studies. The stepwise increase in the tissue CO2 tension from 45 to 265 mm Hg resulted in a lowering of the intracellular pH from 7.04 to 6.68. The regulation of intracellular pH in hypercapnia was far better than that which can be predicted from physicochemical buffering alone, and calculations indicate that the intracellular buffer base concentration increased by more than 10 mequiv./kg at the maximal Pco2 values encountered.  相似文献   

20.
Abstract Turnover times of radioactive glucose were shorter in paddy soil (4–16 min) than in Lake Constance sediment (18–62 min). In the paddy soil, 65–75% of the radioactive glucose was converted to soluble metabolites. In the sediment, only about 25% of the radioactive glucose was converted to soluble metabolites, the rest to particulate material. In anoxic paddy soil, the degradation pattern of position-labelled glucose was largely consistent with glucose degradation via the Embden-Meyerhof-Parnas (EMP) pathway followed by methanogenic acetate cleavage: CO2 mainly originated from C-3,4, whereas CH4 mainly originated from C-1 and C-6 of glucose. Acetate-carbon originated from C-1, C-2 and C-6 rather than from C-3,4 of glucose. In both paddy soil and Lake Constance sediment acetate and CO2 were the most important early metabolites of radioactive glucose. Other early products included propionate, ethanol/butyrate, succinate, and lactate, but accounted each for less than 1–8% of the glucose utilized. The labelling of propionate by [3,4-14C]glucose suggests that it was mainly produced from glucose or lactate rather than from ethanol. Isopropanol and caproate were also detectable in paddy soil, but were not produced from radioactive glucose. Chloroform inhibited methanogenesis, inhibited the further degradation of radioactive acetate and resulted in the accumulation of H2, however, did not inhibit glucose degradation. Since acetate was the main soluble fermentation product of glucose and was produced at a relatively high molar acetate: CO2 ratio (2.5:1), homoacetogenesis appeared to be the most important glucose fermentation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号