首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine the metabolic function of the marked increase in plasma epinephrine which occurs in fasted rats during treadmill exercise. Fasted adrenodemedullated (ADM) and sham-operated (SHAM) rats were run on a rodent treadmill (21 m/min, 15% grade) for 30 min or until exhaustion. ADM rats were infused with saline, epinephrine, glucose, or lactate during the exercise bouts. ADM saline-infused rats showed markedly reduced endurance, hypoglycemia, elevated plasma insulin, reduced blood lactate, and reduced muscle glycogenolysis compared with exercising SHAM's. Epinephrine infusion corrected all deficiencies. Glucose infusion restored endurance run times and blood glucose to normal without correcting the deficiencies in blood lactate and muscle glycogenolysis. Infusion of lactate partially corrected the hypoglycemia at 30 min of exercise, but endurance was not restored to normal and rats were hypoglycemic at exhaustion. We conclude that in the fasted exercising rat, actions of epinephrine in addition to provision of gluconeogenic substrate are essential for preventing hypoglycemia and allowing the rat to run for long periods of time.  相似文献   

2.
The anorexigenic peptide, glucagon-like peptide-1 (GLP-1), reduces glucose metabolism in the human hypothalamus and brain stem. The brain activity of metabolic sensors such as AMP-activated protein kinase (AMPK) responds to changes in glucose levels. The mammalian target of rapamycin (mTOR) and its downstream target, p70S6 kinase (p70S6K), integrate nutrient and hormonal signals. The hypothalamic mTOR/p70S6K pathway has been implicated in the control of feeding and the regulation of energy balances. Therefore, we investigated the coordinated effects of glucose and GLP-1 on the expression and activity of AMPK and p70S6K in the areas involved in the control of feeding. The effect of GLP-1 on the expression and activities of AMPK and p70S6K was studied in hypothalamic slice explants exposed to low- and high-glucose concentrations by quantitative real-time RT-PCR and by the quantification of active-phosphorylated protein levels by immunoblot. In vivo, the effects of exendin-4 on hypothalamic AMPK and p70S6K activation were analysed in male obese Zucker and lean controls 1 h after exendin-4 injection to rats fasted for 48 h or after re-feeding for 2–4 h. High-glucose levels decreased the expression of Ampk in the lateral hypothalamus and treatment with GLP-1 reversed this effect. GLP-1 treatment inhibited the activities of AMPK and p70S6K when the activation of these protein kinases was maximum in both the ventromedial and lateral hypothalamic areas. Furthermore, in vivo s.c. administration of exendin-4 modulated AMPK and p70S6K activities in those areas, in both fasted and re-fed obese Zucker and lean control rats.  相似文献   

3.
To determine running performance and hormonal and metabolic responses during insulin-induced hypoglycemia, fed and fasted male rats (315 +/- 3 g) were infused with insulin (100 mU/ml, 1.5 ml/h) or saline (1.5 ml/h) for 60 min and then killed at rest or after running on the treadmill (21 m/min, 15% grade). Insulin-infused fed rats ran poorly during the second 10 min of a 20-min exercise test. They were capable of running a total of 43 +/- 5 min, compared with 138 +/- 6 min for saline-infused fed rats. Fasted insulin-infused rats were able to run only 12.8 +/- 0.8 min, compared with 122 +/- 15 min for fasted saline-infused rats. In fasted rats, blood glucose was 1.6 +/- 0.1 mM after 60 min of insulin infusion and 1.2 +/- 0.1 mM after running to exhaustion. Artificial increase of plasma free fatty acids had no effect on performance. Intravenous infusion of glucose at the time of fatigue produced an immediate recovery, allowing the formerly fatigued rats to run 20 min without development of fatigue. These results provide evidence that severe hypoglycemia can be a significant cause of fatigue, even if it occurs early in the course of an exercise bout.  相似文献   

4.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

5.
AMP-activated protein kinase (AMPK) is emerging as a key signaling pathway that modulates cellular metabolic processes. In skeletal muscle, AMPK is activated during exercise. Increased myocardial substrate metabolism during exercise could be explained by AMPK activation. Although AMPK is known to be activated during myocardial ischemia, it remains uncertain whether AMPK is activated in response to the physiological increases in cardiac work associated with exercise. Therefore, we evaluated cardiac AMPK activity in rats at rest and after 10 min of treadmill running at moderate (15% grade, 16 m/min) or high (15% grade, 32 m/min) intensity. Total AMPK activity in the heart increased in proportion to exercise intensity (P < 0.05). AMPK activity associated with the alpha2-catalytic subunit increased 2.8 +/- 0.4-fold (P < 0.02 vs. rest) and 4.5 +/- 0.6-fold (P < 0.001 vs. rest) with moderate- and high-intensity exercise, respectively. AMPK activity associated with the alpha1-subunit increased to a lesser extent. Phosphorylation of the Thr172-regulatory site on AMPK alpha-catalytic subunits increased during exercise (P < 0.001). There was no increase in Akt phosphorylation during exercise. The changes in AMPK activity during exercise were associated with physiological AMPK effects (GLUT4 translocation to the sarcolemma and ACC phosphorylation). Thus cardiac AMPK activity increases progressively with exercise intensity, supporting the hypothesis that AMPK has a physiological role in the heart.  相似文献   

6.
The aim of the present investigation was to investigate plasma ghrelin response to acute maximal exercise in elite male rowers. Eight elite male rowers performed a maximal 6000-m rowing ergometer test (mean performance time: 19 mins 52 secs; 1192.1 +/- 16.4 secs), and venous blood samples were obtained before, immediately after, and after 30 mins of recovery. In addition to ghrelin concentration, leptin, insulin, growth hormone, insulin-like growth factor-1 (IGF-1), testosterone, cortisol, and glucose values were measured. Ghrelin was significantly increased immediately after the exercise (+24.4%; P < 0.05) and was not significantly different than baseline after 30 mins of recovery. Leptin was significantly decreased immediately after the exercise (- 15.8%; P < 0.05) and remained significantly decreased after the first 30 mins of recovery. No changes occurred in insulin concentrations. Growth hormone, IGF-1, and testosterone values were significantly increased and decreased to the pre-exercise level immediately after the exercise and after the first 30 mins of recovery, respectively. Cortisol and glucose values were significantly increased immediately after the exercise and remained significantly increased during the first 30 mins of recovery. There were no relationships between plasma ghrelin and other measured blood parameters after the exercise, nor were changes in ghrelin related to changes in other measured blood biochemical values after the exercise. In conclusion, these results suggest that acute negative energy balance induced by specific maximal short-term exercise elicits a metabolic response with opposite changes in ghrelin and leptin concentrations in elite male athletes.  相似文献   

7.
Recent reports have shown that immediately after an acute bout of exercise the glucose transport system of rat skeletal muscle plasma membranes is characterized by an increase in both glucose transporter number and intrinsic activity. To determine the duration of the exercise response we examined the time course of these changes after completion of a single bout of exercise. Male rats were exercised on a treadmill for 1 h (20 m/min, 10% grade) or allowed to remain sedentary. Rats were killed either immediately or 0.5 or 2 h after exercise, and red gastrocnemius muscle was used for the preparation of plasma membranes. Plasma membrane glucose transporter number was elevated 1.8- and 1.6-fold immediately and 30 min after exercise, although facilitated D-glucose transport in plasma membrane vesicles was elevated 4- and 1.8-fold immediately and 30 min after exercise, respectively. By 2 h after exercise both glucose transporter number and transport activity had returned to nonexercised control values. Additional experiments measuring glucose uptake in perfused hindquarter muscle produced similar results. We conclude that the reversal of the increase in glucose uptake by hindquarter skeletal muscle after exercise is correlated with a reversal of the increase in the glucose transporter number and activity in the plasma membrane. The time course of the transport-to-transporter ratio suggests that the intrinsic activity response reverses more rapidly than that involving transporter number.  相似文献   

8.
Resistance (muscle strengthening) exercise is a key component of exercise recommendations for weight control, yet very little is known about the effects of resistance exercise on appetite. We investigated the effects of resistance and aerobic exercise on hunger and circulating levels of the gut hormones acylated ghrelin and peptide YY (PYY). Eleven healthy male students: age 21.1 +/- 0.3 yr, body mass index 23.1 +/- 0.4 kg/m(2), maximum oxygen uptake 62.1 +/- 1.8 ml.kg(-1).min(-1) (means +/- SE) undertook three, 8-h trials, 1) resistance exercise: a 90-min free weight lifting session followed by a 6.5-h rest period, 2) aerobic exercise: a 60-min run followed by a 7-h rest period, 3) control: an 8-h rest, in a randomized crossover design. Meals were provided 2 and 5 h into each trial. Hunger ratings and plasma concentrations of acylated ghrelin and PYY were measured throughout. Two-way ANOVA revealed significant (P < 0.05) interaction effects for hunger, acylated ghrelin, and PYY, indicating suppressed hunger and acylated ghrelin during aerobic and resistance exercise and increased PYY during aerobic exercise. A significant trial effect was observed for PYY, indicating higher concentrations on the aerobic exercise trial than the other trials (8 h area under the curve: control 1,411 +/- 110, resistance 1,381 +/- 97, aerobic 1,750 +/- 170 pg/ml 8 h). These findings suggest ghrelin and PYY may regulate appetite during and after exercise, but further research is required to establish whether exercise-induced changes in ghrelin and PYY influence subsequent food intake.  相似文献   

9.
Ghrelin, released from the stomach, stimulates food intake through activation of the ghrelin receptor (GHS-R) located on neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons in the hypothalamus. A role for the energy sensor AMP-activated protein kinase (AMPK) and its downstream effector uncoupling protein 2 (UCP2) in the stimulatory effect of exogenous ghrelin on NPY/AgRP expression and food intake has been suggested. This study aimed to investigate whether a rise in endogenous ghrelin levels is able to influence hypothalamic AMPK activity, pACC, UCP2 and NPY/AgRP expression through activation of GHS-R. An increase in endogenous ghrelin levels was established by fasting (24h) or by induction of streptozotocin(STZ)-diabetes (15 days) in GHS-R(+/+) and GHS-R(-/-) mice. GHS-R(+/+) mice showed a significant increase in AgRP and NPY mRNA expression after fasting, which was not observed in GHS-R(-/-) mice. Fasting did not affect AMPK activity nor ACC phosphorylation in both genotypes and increased UCP2 mRNA expression. The hyperghrelinemia associated with STZ-induced diabetes was accompanied by an increased NPY and AgRP expression in GHS-R(+/+) but not in GHS-R(-/-) mice. AMPK activity and UCP2 expression in GHS-R(+/+) mice after induction of diabetes were decreased to a similar extent in both genotypes. Exogenous ghrelin administration tended to decrease hypothalamic AMPK activity. In conclusion, an increase in endogenous ghrelin levels triggered by fasting or STZ-induced diabetes stimulates the expression of AgRP and NPY via interaction with the GHS-R. The changes in AMPK activity, pACC and UCP2 occur independently from GHS-R suggesting that they do not play a major role in the orexigenic effect of endogenous ghrelin.  相似文献   

10.
Prolonged exercise increases circulating insulin-like growth factor binding protein-1 (IGFBP-1) in humans and animals, but its physiological significance is unknown. This study examined 1) time-course changes in plasma IGFBP-1 and hepatic IGFBP-1 mRNA expression after exercise, 2) changes in IGFBP-1 in relation to plasma glucose, insulin, and IGF-I, and 3) the impact of feeding a postexercise meal on the IGFBP-1 response. Food-deprived male rats were vigorously run on a treadmill and compared with nonexercised controls at 15 min and 1, 4, 8, and 12 h after exercise. Circulating insulin concentrations in exercised rats were lower than in controls at 15 min and 1 h, whereas plasma glucose and IGF-I remained unaffected. Circulating and hepatic expression of IGFBP-1 was markedly increased above that of controls at 15 min, 1 h, and 12 h. In a separate experiment, one-half of the exercised animals received a nutritionally complete meal immediately after the experimental run. The meal elevated plasma insulin and glucose concentrations at 15 min and 1 h. Despite this change in nutritional status, serum IGFBP-1 concentrations and hepatic IGFBP-1 abundance remained elevated at 15 min and 1 h. These results demonstrate that the IGFBP-1 response to a single bout of treadmill exercise is short in duration and independent of insulin, glucose, and amino acid availability.  相似文献   

11.
Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100 μg/kg body weight, ip) or repeated injections of LPS over 6 days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40 μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200 ng/μl in 5 μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin.  相似文献   

12.
Glucose mobilization and utilization in the periphery and central nervous system are important during exercise and are responsible for exercise efficacy. Magnesium (Mg) is involved in energy production and plays a role in exercise performance. This study aimed to explore the effects of Mg on the dynamic changes in glucose and lactate levels in the muscle, blood and brain of exercising rats using a combination of auto-blood sampling and microdialysis. Sprague-Dawley rats were pretreated with saline or magnesium sulfate (MgSO4, 90 mg/kg, i.p.) 30 min before treadmill exercise (20 m/min for 60 min). Our results indicated that the muscle, blood, and brain glucose levels immediately increased during exercise, and then gradually decreased to near basal levels in the recovery periods of both groups. These glucose levels were significantly enhanced to approximately two-fold (P<0.05) in the Mg group. Lactate levels in the muscle, blood, and brain rapidly and significantly increased in both groups during exercise, and brain lactate levels in the Mg group further elevated (P<0.05) than those in the control group during exercise. Lactate levels significantly decreased after exercise in both groups. In conclusion, Mg enhanced glucose availability in the peripheral and central systems, and increased lactate clearance in the muscle during exercise.  相似文献   

13.
AMP-activated protein kinase plays a role in the control of food intake   总被引:32,自引:0,他引:32  
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that acts as an intracellular energy sensor maintaining the energy balance within the cell. The finding that leptin and adiponectin activate AMPK to alter metabolic pathways in muscle and liver provides direct evidence for this role in peripheral tissues. The hypothalamus is a key regulator of food intake and energy balance, coordinating body adiposity and nutritional state in response to peripheral hormones, such as leptin, peptide YY-(3-36), and ghrelin. To date the hormonal regulation of AMPK in the hypothalamus, or its potential role in the control of food intake, have not been reported. Here we demonstrate that counter-regulatory hormones involved in appetite control regulate AMPK activity and that pharmacological activation of AMPK in the hypothalamus increases food intake. In vivo administration of leptin, which leads to a reduction in food intake, decreases hypothalamic AMPK activity. By contrast, injection of ghrelin in vivo, which increases food intake, stimulates AMPK activity in the hypothalamus. Consistent with the effect of ghrelin, injection of 5-amino-4-imidazole carboxamide riboside, a pharmacological activator of AMPK, into either the third cerebral ventricle or directly into the paraventricular nucleus of the hypothalamus significantly increased food intake. These results suggest that AMPK is regulated in the hypothalamus by hormones which regulate food intake. Furthermore, direct pharmacological activation of AMPK in the hypothalamus is sufficient to increase food intake. These findings demonstrate that AMPK plays a role in the regulation of feeding and identify AMPK as a novel target for anti-obesity drugs.  相似文献   

14.
The purpose of this study was to determine the effect of exercise on the rate of onset of hypoglycemia induced by infusion of excess insulin (0.8 mU.min-1.100 g-1). Rats were either fasted overnight (FS) or fed ad libitum (FD). FS rats were killed after 5, 10, or 15 min of infusion at rest or after running on the treadmill at 21 m/min and 15% grade. FD rats were killed after 10, 20, or 40 min of infusion at rest or after exercise. Rats were also killed 15 min postexercise for FS and 60 or 120 min postexercise for FD with continued insulin infusion. The progressive decline in blood glucose was not altered by exercise in the FS rats. FD rats showed a significant difference due to exercise only after 40 min (rest 4.2 +/- 0.3 mM, exercise 3.2 +/- 0.2 mM). A significant postexercise repletion of glycogen was observed in red vastus and soleus muscles of FD rats despite the decreasing blood glucose values. These data indicate that exercise accelerates the rate of development of hypoglycemia in FD rats. In the FS rats, where the rate of decline in blood glucose was greater, exercise had no effect on the time course of development of hypoglycemia.  相似文献   

15.
Changes in appetite occur during the ovarian cycle in female mammals. Research on appetite-regulatory gastrointestinal peptides in females is limited, because reproductive changes in steroid hormones present additional experimental factors to control for. This study aimed to explore possible changes in the orexigenic (appetite-stimulating) gastrointestinal peptide hormone ghrelin during the rodent oestrous cycle. Fed and fasted plasma and stomach tissue samples were taken from female Wistar rats (32–44 weeks of age) at each stage of the oestrous cycle for total ghrelin quantification using radioimmunoassay. Sampling occurred during the dark phase when most eating takes place in rats. Statistical analysis was by paired-samples t-test, one-way ANOVA on normally distributed data, with Tukey post-hoc tests, or Kruskal-Wallis if not. GLM univariate analysis was used to assess main effects and interactions in ghrelin concentrations in the fed or fasted state and during different stages of the ovarian cycle, with age as a covariate. No consistent fed to fasted ghrelin increases were measured in matched plasma samples from the same animals, contrary to expectations. Total ghrelin concentrations did not significantly change between cycle stages with ANOVA, in either fed or fasted plasma or in stomach tissue. This was despite significantly decreased fasted stomach contents at oestrus (P = 0.028), suggesting decreased food intake. There was however a significant interaction in ghrelin plasma concentrations between fed and fasted proestrus rats and a direct effect of age with rats over 37 weeks old having lower circulating concentrations of ghrelin in both fed and fasted states. The biological implications of altered ghrelin plasma concentrations from 37 weeks of age are as yet unknown, but warrant further investigation. Exploring peripheral ghrelin regulatory factor changes with increasing age in reproductively competent females may bring to light potential effects on offspring development and nutritional metabolic programming.  相似文献   

16.
BACKGROUND: Although hormonal responses to exercise performed in fed state are well documented, far less in known about the effect of a single exercise bout, performed after overnight fasting, on cardio-respiratory responses and hormones secretion. It has been reported that recently discovered hormones as leptin and ghrelin may affect cardiovascular responses at rest. However, their effect on the cardiovascular responses to exercise is unknown. AIMS: This study was designed to determine the effect of overnight fasting on cardio- respiratory responses during moderate incremental exercise. We have hypothesised that fasting / exercise induced changes in plasma leptin / ghrelin concentrations may influence cardiovascular response. MATERIAL AND METHODS: Eight healthy non-smoking men (means +/- SE.: age 23.0 +/- 0.5 years; body mass 71.9 +/- 1.5 kg; height 179.1 +/- 0.8 cm; BMI 22.42 +/- 0.49 kg x m(-2) with VO2max of 3.71 +/- 0.10 l x min(-1)) volunteered for this study. The subjects performed twice an incremental exercise test, with the increase of power output by 30 W every 3 minutes. Tests were performed in a random order: once in the feed state--cycling until exhaustion and second, about one week later, after overnight fasting--cycling until reaching 150 W. RESULTS: In the present study we have compared the results obtained during incremental exercise performed only up to 150 W (59 +/- 2 % of VO2max) both in fed and fasted state. Heart rate measured during exercise at each power output, performed in fasted state was by about 10 bt x min(-1) (p = 0.02) lower then in fed subjects. Respiratory quotient and plasma lactate concentration in fasted state were also significantly (p<0.001) lower than in the fed state. Pre-exercise plasma leptin and ghrelin concentrations were not significantly different in fed and fasted state. Exercise induced increase in hGH was not accompanied by a significant changes in the studied gut hormones such as ghrelin, leptin, and insulin, except for plasma gastrin concentration, which was significantly (p = 0.008) lower in fasting subjects at the power output of 150 W. Plasma [IL-6] at rest before exercise performed in fasted state was significantly (p = 0.03) elevated in relation to the fed state. This was accompanied by significantly higher (p = 0.047) plasma noradrenaline concentration. Plasma IL-6 concentration at rest in fed subjects was negatively correlated with plasma ghrelin concentration (r = -0.73, p < 0.05) and positively correlated with plasma insulin concentration (r = 0.78, p < 0.05). Significant negative correlation (r = -0.90; p < 0.05) was found between plasma insulin and ghrelin concentration at rest in fed subjects. CONCLUSIONS: We have concluded that plasma leptin and ghrelin concentrations have no significant effect on the fasting-induced attenuation of heart rate during exercise. We have postulated that this effect is caused by increased plasma norepinephrine concentration, leading to the increase in systemic vascular resistance and baroreceptor mediated vagal stimulation. Moreover we believe, that the fasting-induced significant increase in plasma IL-6 concentration at rest, accompanied by higher plasma norepinephrine concentration and lower RQ, belongs to the physiological responses, maintaining energy homeostasis in the fasting state.  相似文献   

17.
1. The effect of exercise (2 hr treadmill running at 28 m/min) on PDHa (the activity of the active form of pyruvate dehydrogenase) in untrained rats, trained rats (2 hr/d at 25 m/min for 4 wk), and in 24 hr fasted rats was determined. 2. Exercise increased PDHa activity approximately 2 fold in fed-untrained rats. 3. Fasting decreased PDHa activity in sedentary rats to approximately half the activity in fed rats. 4. The increase in PDHa activity during exercise was less in fasted than fed rats. 5. Training did not change the total activity of PDH (phosphorylated plus nonphosphorylated forms) but the percent of PDH in the active form was increased in muscle of trained-rested rats. 6. PDHa activity was unchanged by acute exercise (2.5 hr at 40 m/min) in the trained rats.  相似文献   

18.
The purpose of this experiment was to examine glycogen depletion in muscles of chronic diabetic rats during treadmill running of moderate intensity and glycogen repletion following the exercise bouts. Diabetes was induced with a single intravenous injection of streptozotocin (70 mg × kg?1). Glycogen concentrations in muscles from diabetic and normal animals were determined at rest, after running either 10 or 30 min at 23 m × min?1 (5% incline), or 2, 4, or 8 hr following 30 min of running at the same speed and incline. With the exception of soleus muscle after 30 min of running, there were no differences in muscle glycogen contents between normal and diabetic rats before exercise, immediately after exercise, or during the recovery period. All muscles showed a significant loss of glycogen during exercise, and most muscles had completely restored their glycogen by 2 hr following exercise. Blood lactate concentrations were also similar for normal and diabetic rats at rest and after exercise. It is concluded that the diabetic condition studied in this experiment did not significantly alter muscle glycogen metabolism during exercise of moderate intensity or during recovery from the activity.  相似文献   

19.
Patients with craniopharyngioma (CP), an embryological tumor located in the hypothalamic and/or pituitary region, often suffer from uncontrolled eating and severe obesity. We aimed to compare peripherally secreted hormones involved in controlling food intake in normal weight and obese children and adolescents with CP vs. controls. Plasma insulin, glucose, total ghrelin, and peptide‐YY (PYY) levels were assessed under fasting conditions as well as 60 min after liquid mixed meal in four groups: Normal weight (n = 12) and obese (n = 15) CP patients, and 12 normal weight and 15 obese otherwise healthy BMI‐, gender‐ and age‐matched controls. Homeostasis model assessment of insulin resistance (HOMAIR), as well as quantitative insulin sensitivity check index (QUICKI) were calculated. Obese CP subjects had significantly higher HOMAIR, higher baseline and postmeal insulin but lower ghrelin levels, weaker postmeal changes for PYY, and lower QUICKI compared to obese controls. QUICKI data from all CP patients correlated positively with ghrelin and PYY % postmeal changes (ghrelin: r = 0.38, P = 0.023; PYY r = 0.40, P = 0.017) and negatively with standard deviation score‐BMI (SDS‐BMI: r = ?0.49, P = 0.002). Tumor growth of 87% obese and 58% of normal weight CP patients affected the hypothalamic area which was associated with higher SDS‐BMI and weaker % postmeal ghrelin changes (P = 0.014) compared to CP patients without hypothalamic tumor involvement. Blunted postmeal ghrelin and PYY responses in obese CP subjects are likely due to their higher degree of insulin resistance and lower insulin sensitivity compared to matched obese controls. Thus, insulin resistance in CP patients seems to affect eating behavior by affecting meal responses of gut peptides.  相似文献   

20.
A single bout of exercise increases glucose uptake and fatty acid oxidation in skeletal muscle, with a corresponding activation of AMP-activated protein kinase (AMPK). While the exercise-induced increase in glucose uptake is partly due to activation of AMPK, it is unclear whether the increase of fatty acid oxidation is dependent on activation of AMPK. To examine this, transgenic mice were produced expressing a dominant-negative (DN) mutant of alpha(1)-AMPK (alpha(1)-AMPK-DN) in skeletal muscle and subjected to treadmill running. alpha(1)-AMPK-DN mice exhibited a 50% reduction in alpha(1)-AMPK activity and almost complete loss of alpha(2)-AMPK activity in skeletal muscle compared with wild-type littermates (WT). The fasting-induced decrease in respiratory quotient (RQ) ratio and reduced body weight were similar in both groups. In contrast with WT mice, alpha(1)-AMPK-DN mice could not perform high-intensity (30 m/min) treadmill exercise, although their response to low-intensity (10 m/min) treadmill exercise was not compromised. Changes in oxygen consumption and the RQ ratio during sedentary and low-intensity exercise were not different between alpha(1)-AMPK-DN and WT. Importantly, at low-intensity exercise, increased fatty acid oxidation in response to exercise in soleus (type I, slow twitch muscle) or extensor digitorum longus muscle (type II, fast twitch muscle) was not impaired in alpha(1)-AMPK-DN mice, indicating that alpha(1)-AMPK-DN mice utilize fatty acid in the same manner as WT mice during low-intensity exercise. These findings suggest that an increased alpha(2)-AMPK activity is not essential for increased skeletal muscle fatty acid oxidation during endurance exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号