首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barbiturates Are Selective Antagonists at A1 Adenosine Receptors   总被引:3,自引:0,他引:3  
Barbiturates in pharmacologically relevant concentrations inhibit binding of (R)-N6-phenylisopropyl[3H]adenosine ([3H]PIA) to solubilized A1 adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. Ki values are similar to those obtained for membrane-bound receptors and are 31 microM for (+/-)-5-(1,3-dimethyl)-5-ethylbarbituric acid [(+/-)-DMBB] and 89 microM for (+/-)-pentobarbital. Kinetic experiments demonstrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-N6-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The stimulation of adenylate cyclase via A2 adenosine receptors in membranes from N1E 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. It is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A1 adenosine receptor antagonism may convey excitatory properties to barbiturates.  相似文献   

2.
The presence of adenosine receptors coupled to adenylate cyclase in rat heart sarcolemma is demonstrated in these studies. Heart sarcolemma was isolated by the hypotonic shock-Lithium bromide treatment method. This preparation contained negligible amounts (2-4%) of contamination by other subcellular organelles such as mitochondria, sarcoplasmic reticulum, and myofibrils as verified by electron microscopic examination. In addition this preparation was also devoid of endothelial cells, since angiotensin-converting enzyme activity was not detected in this preparation. N-Ethylcarboxamide adenosine (NECA), L-N6-phenylisopropyladenosine (PIA), and adenosine N'-oxide (Ado N'-oxide) were all able to stimulate adenylate cyclase in heart sarcolemma, but not in crude homogenate, with an apparent Ka of 3-7 microM. The activation of adenylate cyclase by NECA was dependent on the concentrations of metal ions such as Mg2+ or Mn2+. The maximal stimulation was observed at lower concentrations of the metal ions (0.2-0.5 mM). At 5 mM Mg2+ or Mn2+, the stimulation by NECA was completely abolished. The stimulatory effect of NECA on adenylate cyclase was also dependent on guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine. In addition, 2'-deoxyadenosine showed an inhibitory effect on adenylate cyclase. The myocardial adenylate cyclase was also stimulated by beta-adrenergic agonists, dopamine and glucagon, and inhibited by cholinergic agonists such as carbachol and oxotremorine. The stimulation of adenylate cyclase by NECA was found to be additive with maximal stimulation obtained by epinephrine. These data suggest that rat heart sarcolemma contains adenosine (Ra), beta-adrenergic, dopaminergic, glucagon, and cholinergic receptors, and the stimulation of adenylate cyclase by epinephrine and adenosine occurs by distinctly different mechanism or adenosine and epinephrine stimulate different cyclase populations.  相似文献   

3.
Abstract: Many Gs-linked receptors have been reported to use multiple signalling pathways in transfected cells but few in their normal cell environment. We show that the adenosine A2a receptor uses two signalling pathways to increase the release of acetylcholine from striatal nerve terminals. One pathway involves activation of Gs, adenylyl cyclase, protein kinase A, and P-type calcium channels; the other is mediated by a cholera toxin-insensitive G protein, protein kinase C, and N-type calcium channels. The effects of these two pathways are not additive, the second pathway being inhibited by the first; but they are equally sensitive to the A2a receptor antagonist KF17837. This demonstrates that the A2a receptor activates two signalling systems in striatal cholinergic neurons.  相似文献   

4.
M C Olianas  P Onali 《Life sciences》1990,46(8):591-598
We investigated the effect of the relatively selective A1 adenosine receptor agonist N6-(R)-phenylisopropyladenosine (R-PIA) on tyrosine hydroxylase activity (TH) of synaptosomes obtained from rat striatum. TH activity was assayed in supernatant obtained following sonication and centrifugation of the tissue preincubated with the test compounds. R-PIA produced a modest decrease of basal enzyme activity, but significantly reduced the activation of the enzyme by submaximal (0.1-0.5 microM) concentrations of forskolin (FSK) a stimulator of adenylate cyclase. The IC 50 value of R-PIA was 17 nM and the maximal inhibition corresponded to 30-40% decrease of the enzyme activity stimulated by FSK. The S-isomer of PIA failed to affect TH activity under control and stimulated conditions. Moreover, the inhibitory effect of R-PIA was completely antagonized by 8-cyclopentyl- 1,3 -dimethylxanthine, an adenosine receptor blocker. R-PIA inhibited both basal and FSK-stimulated adenylate cyclase activity. These results indicate that in striatal dopaminergic terminals TH activity can be modulated in an inhibitory manner by activation of presynaptic A1 adenosine receptors.  相似文献   

5.
S R Barry 《Life sciences》1990,46(19):1389-1397
Adenosine (1 microM to 1 mM) depressed spontaneous transmitter release from frog motor nerve terminals without producing any observable postsynaptic effects. Since this action of adenosine was blocked by 20 microM theophylline and 1 microM 8-phenyltheophylline, adenosine probably acts at a specific receptor on motor nerve terminals to reduce spontaneous transmitter output. The effects of the adenosine analogs, L-N6-phenylisopropyladenosine (L-PIA, 100 pM to 1 microM), D-PIA (100 nM to 100 microM), and 5'-N-ethylcarboxamidoadenosine (NECA, 10nM to 100 microM), were tested on spontaneous transmitter release at the frog neuromuscular junction. L-PIA depressed mepp frequency at a threshold concentration of about 1 nM, was thirteen times more potent than NECA, and was 294 times more effective than D-PIA. The rank-order potency of these analogs indicates that adenosine acts at an A1-like receptor to depress spontaneous transmitter release. Inhibitory actions of maximally effective concentrations of adenosine and L-PIA were also blocked by the A1-specific antagonist, 1-3-dipropyl-8-cyclopentylxanthine (DPCPX) at a concentration of 100 nM. Micromolar concentrations of NECA, an agonist with approximately equal affinity for the A1 and A2 receptors, produced biphasic effects on mepp frequency. Thus, a second adenosine receptor, perhaps of the A2 subtype, may be present on motor nerve terminals and may mediate an increase in spontaneous transmitter release.  相似文献   

6.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

7.
Abstract— The presynaptic regulation of stimulated dopa-mine release from superfused rat striatal synaptosomes by opioids and γ-aminobutyric acid (GABA) was studied. It was found that in addition to dopamine D2 autoreceptors, calcium-dependent K+-stimulated [3H]dopamine release was inhibited through activation of a homogeneous population of k -opioid receptors in view of the potent inhibitory effect of the k -selective agonist U69.593 (EC50 0.2 nM) and its antagonism by norbinaltorphimine. Neither μ-nor δ-selective receptor agonists affected release of [3H]-dopamine. In addition, GABA potently inhibited the evoked [3H]dopamine release (EC50 0.4 nM) through activation of GABAA receptors in view of the GABA-mimicking effect of muscimol, the sensitivity of its inhibitory effect to picro-toxin and bicuculline, and the absence of an effect of the GABAB receptor agonist baclofen. In the presence of a maximally effective concentration of GABA, U69,593 did not induce an additional release-inhibitory effect, indicating that these receptors and the presynaptic D2 receptor are colocalized on the striatal dopaminergic nerve terminals. The excitatory amino acid agonists N-methyl-d -aspartate and kainate, as well as the cholinergic agonist carbachol, stimulated [3H]dopamine release, which was subject to k -opioid receptor-mediated inhibition. In conclusion, striatal dopamine release is under regulatory control of multiple excitatory and inhibitory neurotransmitter by activation of colocalized presynaptic receptors for excitatory amino acids, acetylcholine, dopamine, dynorphins, and GABA within the dopaminergic nerve terminals. Together, these receptors locally control ongoing dopamine neurotransmission.  相似文献   

8.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

9.
Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson's disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. As motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret ( rearranged during transfection ) and GDNF family receptor α1 controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/mL) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GDNF family receptor α1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphorylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors.  相似文献   

10.
Barbiturates have been shown to be competitive antagonists at A1 adenosine receptors in radioligand binding studies. The present study investigates the effects of pentobarbital on the A1 receptor-mediated inhibition of neurotransmitter release from rabbit hippocampal slices. The inhibition of the electrically evoked release of [3H]noradrenaline by the A1 receptor agonist (R)-N6-phenylisopropyladenosine (R-PIA) was antagonized by pentobarbital with an apparent pA2 value of 3.5. Low concentrations of pentobarbital alone altered neither basal nor evoked release of [3H]noradrenaline, whereas 1,000 microM pentobarbital enhanced the basal and reduced the evoked release. In the presence of 8-phenyltheophylline, pentobarbital (200 microM and 1,000 microM) reduced the evoked noradrenaline release. Pentobarbital also antagonized the inhibition of [3H]acetylcholine release by R-PIA. In contrast to the noradrenaline release model, the evoked release of acetylcholine was enhanced by the presence of pentobarbital (50-500 microM), an effect that was lost in the presence of 8-phenyltheophylline. These results indicate that pentobarbital, in addition to a direct inhibitory action at higher concentrations, has a facilitatory effect on neurotransmitter release by blocking presynaptic A1 adenosine receptors. The possible relevance of these findings for the excitatory effects of barbiturates is discussed.  相似文献   

11.
Endogenous adenosine acting via A1 adenosine receptors is capable of inhibiting adenylate cyclase activity and neurotransmitter release in the brain. In this report, we describe the synthesis and attributes of a new series of A1 adenosine receptor agonists. One of these, [125I]N6-2-(4-amino-3-iodophenyl)ethyladenosine, can be used as a radioligand and another, [125I]N6-2-(4-azido-3-iodophenyl)ethyladenosine, as a photoaffinity probe. The unlabeled ligand, N6-2-(4-aminophenyl)ethyladenosine, and its iodinated product are full agonists, inhibiting cyclic AMP production in rat cerebral cortex membranes to the same extent as the prototypic A1 agonist N6-R-1-phenyl-2-propyladenosine. These new ligands are not substrates for adenosine deaminase. The new photoaffinity azide described here labels an Mr 38,000 protein that displays all the pharmacological characteristics expected of the A1 adenosine receptor. This is the same molecular-weight protein previously described using a cross-linking radioligand. This new azide compound demonstrates a 15-fold higher efficiency of incorporation, making it the photoaffinity probe of choice for tissues containing low concentrations of A1 adenosine receptors.  相似文献   

12.
The presence of adenosine receptors coupled to adenylate cyclase in cultured cardiocytes from atria and ventricles from neonatal rats is demonstrated in these studies. N-Ethylcarboxamideadenosine (NECA), l-N6-phenylisopropyladenosine (PIA), and 2-chloroadenosine (2-cl-Ado) stimulated adenylate cyclase in a concentration-dependent manner in both cultured atrial and ventricular cells. The order of potency of stimulation was NECA > PIA > 2-cl-Ado. The stimulation of adenylate cyclase by NECA was enhanced by guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine in both these cells. Other agonists such as epinephrine, norepinephrine, dopamine, F?, and forskolin were also able to stimulate adenylate cyclase, although the extent of stimulation by these agents was higher in ventricular than in atrial cells. The stimulation of adenylate cyclase by epinephrine and norepinephrine was inhibited by propranolol but not by phentolamine. On the other hand, phentolamine, propranolol, and haloperidol inhibited dopamine-stimulated adenylate cyclase activity to the same extent. Forskolin, at its maximal concentration, potentiated the stimulatory effect of epinephrine, norepinephrine, and dopamine on adenylate cyclase in both atrial and ventricular cardiocytes, but the interaction of NECA with epinephrine, norepinephrine, or dopamine was different in atrial and ventricular cells. The stimulation by an optimal concentration of NECA was additive with maximal stimulation by the catecholamines in atrial cells but not in ventricular cells. The data suggest the existence of adenosine “Ra” and catecholamine receptors in cultured atrial and ventricular cardiocytes. It can be postulated that adenosine in addition to its role as a potent vasodilator might regulate cardiac performance through its interaction with “Ra” receptors associated with adenylate cyclase. The difference in the mode of interaction of adenosine with catecholamines in atrial and ventricular cells suggests that the mechanism by which these agents activate adenylate cyclase may be different in these cells.  相似文献   

13.
Abstract: The influence of the adenosine A2A receptor on the A1 receptor was examined in rat striatal nerve terminals, a model for other cells in which these receptors are coexpressed. Incubation of striatal synaptosomes with the A2A receptor agonist 2- p -(2-carboxyethyl)phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS 21680) caused the appearance of a low-affinity binding site for the A1 receptor agonist 2-chloro- N 6-cyclopentyladenosine (CCPA). This effect was blocked by the A2A receptor antagonist ZM241385 and by the protein kinase C inhibitor chelerythrine, but not by the protein kinase A inhibitor N -(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004). The effect was not seen with striatal membranes or with hypotonically lysed synaptosomes. These results demonstrate a protein kinase C-mediated heterologous desensitisation of the A1 receptor by the A2A receptor.  相似文献   

14.
A new radiolabeled adenosine receptor agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadeno sin e (CGS 21680), apparently specific for high-affinity binding sites of the A2 subtype in rat brain, was used to identify and pharmacologically characterize adenosine receptors in human brain. The binding of [3H]CGS 21680, as determined by standard radioligand binding technique in the presence of exogenously added adenosine deaminase, reached equilibrium after 40 min at 25 degrees C. In saturation studies, a single class of high-affinity binding sites with values for KD of 22 +/- 0.5 nM and Bmax of 444 +/- 63 fmol/mg of protein were observed. Similar binding characteristics were observed regardless of whether rapid filtration or centrifugation was used to separate bound versus free ligand. Of the 14 brain regions examined, [3H]CGS 21680 binding was highest in putamen, followed by globus pallidus and caudate nucleus. The level of [3H]CGS 21680 binding in these areas of basal ganglia was identical to 5'-N-[3H]ethylcarboxamidoadenosine ([3H]NECA) binding in the presence of 50 nM N6-cyclopentyladenosine (CPA). The rank order of agonist potencies as determined by a series of competition experiments was NECA greater than or equal to CGS 21680 greater than 2-chloroadenosine greater than N6-(R)-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6-(S)-phenylisopropyladenosine. This potency order was the same for the binding of [3H]CGS 21680 to rat, and of [3H]NECA in the presence of 50 nM CPA to rat and human, brain membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
To ascertain the presence of adenosine receptors in the trout testis, cells isolated from testes at different spermatogenetic stages were cultured in the presence or absence of adenosine, adenosine receptor agonists, or antagonists and of cAMP analogs, for up to 20 min, or 20 hr, or 4.5 days. Cyclic AMP production was then assayed or 3H-thymidine incorporation was measured. Cellular content of cAMP was enhanced by adenosine, by the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), and by 2-p(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680), an adenosine A2A receptor-selective agonist. The increase in cAMP induced by the adenylate cyclase activator L-858051 was inhibited by the adenosine A1)receptor-selective agonists R-N6-(2-phenylisopropyl)adenosine (R-PIA) and N6-cyclopentyladenosine (CPA). These effects were antagonized by the two adenosine A2)receptor antagonists 3,7-dimethyl-1-propargylxanthine (DMPX) and 8-(3-chlorostyryl)caffeine (CSC), and by the adenosine A1)receptor-selective antagonist 8-cyclopentyl-1,3dipropylxanthine (CPX), respectively. Increase in the cAMP content induced by adenosine was inhibited by the cell permeable adenylate cyclase inhibitor 2',5'-dideoxyadenosine. These data suggest that A(1) and A(2) adenosine receptors which respectively inhibit and stimulate adenylate cyclase activity are present on trout testicular cells (unidentified), while the presence of A3 adenosine receptor subtype was not apparent. 3H-thymidine incorporation decreased in the presence of the adenylate cyclase activator L-858051 and of the cAMP analogs 8-CPT cAMP and Sp-5,6-DCI-cBiMPS, regardless of the presence or absence of the phosphodiesterase inhibitor RO 20-1724. This suggests that an increase in testicular cAMP may act as a negative growth regulator for the mitotic germ cells. In agreement with these data, the activation of A2 stimulatory receptors inhibited short-term (20 hr) DNA synthesis. However, the activation of A1 inhibitory receptors had the same effect. This suggests that events, cAMP-dependent or independent, induced by the activation of testicular adenosine receptors, may participate in the regulation of trout male germ cell proliferation.  相似文献   

16.
An adenosine-sensitive adenylate cyclase has been characterized in cultured mesenteric artery smooth muscle cells. N-Ethylcarboxamide-adenosine (NECA), N-Methylcarboxamide-adenosine (MECA), L-N6-phenylisopropyladenosine (PIA) and 2-chloroadenosine (2-cl-Ado) all stimulated adenylate cyclase in a concentration dependent manner. NECA was the most potent analog (EC50, 1 microM), whereas PIA (EC50, 15 microM), 2-Cl-Ado (EC50, 15 microM) and MECA (EC50, 24 microM), were less potent and had efficacies relative to NECA of 0.61, 0.61 and 0.65, respectively. Adenosine showed a biphasic effect: stimulation at lower concentrations and inhibition at higher concentrations, whereas 2' deoxyadenosine only inhibited adenylate cyclase activity. The stimulatory effect of NECA on adenylate cyclase was dependent on metal ion concentration and was blocked by 3-isobutyl-l-methylxanthine (IBMX) and 8-phenyltheophylline (8-PT). Adenylate cyclase from these cultured cells was also stimulated by other agonists such as epinephrine, norepinephrine, prostaglandins, dopamine, NaF and forskolin. The stimulation of adenylate cyclase by isoproterenol, epinephrine and norepinephrine was blocked by propranolol but not by phentolamine. On the other hand, phentolamine, propranolol and flupentixol all inhibited dopamine-stimulated adenylate cyclase activity. In addition, the stimulation by an optimal concentration of PIA was additive or almost additive with maximal stimulation caused by catecholamines and prostaglandins. These data indicate the presence of adenosine (Stimulatory "Ra"), catecholamine and prostaglandin receptors in mesenteric artery smooth muscle cells and suggest that these agents may exert their physiological actions through their interaction with their respective receptors coupled to adenylate cyclase.  相似文献   

17.
The effect of adenosine on phosphoinositide hydrolysis was examined in 1321N1 human astrocytoma cells. Adenosine, L-N6-phenylisopropyladenosine (L-PIA), and 5'-(N-ethylcarboxamido)adenosine (NECA) inhibited histamine-stimulated accumulation of inositol phosphates in a concentration-dependent manner. The potency order of adenosine analogues for inhibition of inositol phosphate accumulation was L-PIA greater than adenosine greater than NECA, a finding indicating that A1-class adenosine receptors are involved in the inhibition. The reduction in inositol phosphate accumulation by L-PIA was blocked by an adenosine receptor antagonist, 8-phenyltheophylline. Stimulation of A1-class adenosine receptors inhibited isoproterenol-stimulated cyclic AMP accumulation as well as histamine-induced inositol phosphate accumulation. Both inhibitory effects were blocked by pretreatment of the cells with pertussis toxin [islet-activating protein (IAP)]. L-PIA also inhibited guanosine 5'-(gamma-thio)triphosphate (GTP gamma S)-stimulated accumulation of inositol phosphates in membrane preparations, and 8-phenyl-theophylline antagonized the inhibition. L-PIA could not inhibit GTP gamma S-induced accumulation of inositol phosphates in IAP-treated membranes. Gi/Go, purified from rabbit brain, inhibited GTP gamma S-stimulated accumulation of inositol phosphates in a concentration-dependent manner in membrane preparations. These results suggest that stimulation of A1-class adenosine receptors interacts with the IAP-sensitive G protein(s), resulting in the inhibitions of phospholipase C as well as adenylate cyclase in human astrocytoma cells.  相似文献   

18.
Abstract: Adenosine A1 receptors as well as other components of the adenylate cyclase system have been studied in cultured cerebellar granule cells. No significant changes in adenosine A1 receptor number, assayed by radioligand binding in intact cells, were detected from 2 days in vitro (DIV) until 7 DIV. Nevertheless, a decline in this parameter was detected at 9 DIV. The steady-state levels of α-Gs and α-Gi, detected by immunoblotting, showed similar profiles, increasing from 2 to 5 DIV and decreasing afterward. Forskolin-stimulated adenylate cyclase levels also showed an increase until 5 DIV, decreasing at 7 and 9 DIV. The adenosine A1 receptor analogue cyclopentyladenosine (CPA) was able to inhibit cyclic AMP accumulation at 2, 5, and 7 DIV but failed to do so at 9 DIV. This inhibition was prevented by the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The presence of adenosine deaminase in the culture increased adenosine A1 receptor number during the period studied and induced recovery of the inhibitory effect of CPA, lost after 7 DIV. These data suggest that functional expression of adenosine A1 receptors and the other components of the adenylate cyclase system is subjected to regulation during the maturation of cultured cerebellar granule cells and demonstrates a key role for endogenous adenosine in the process.  相似文献   

19.
To identify the involvement of dopamine receptors in the transmembrane signaling of the adenosine receptor-G protein-adenylate cyclase system in the CNS, we examined the effects of pertussis toxin (islet-activating protein, IAP) and apomorphine on A1 adenosine agonist (-)N6-R-[3H]phenylisopropyladenosine ([3H]PIA) and antagonist [3H]xanthine amine congener ([3H]XAC) binding activity and adenylate cyclase activity in cerebral cortex membranes of the rat brain. Specific binding to a single class of sites for [3H]XAC with a dissociation constant (KD) of 6.0 +/- 1.3 nM was observed. The number of maximal binding sites (Bmax) was 1.21 +/- 0.13 pmol/mg protein. Studies of the inhibition of [3H]XAC binding by PIA revealed the presence of two classes of PIA binding states, a high-affinity state (KD = 2.30 +/- 1.16 nM) and a low-affinity state (KD = 1.220 +/- 230 nM). Guanosine 5'-(3-O-thio)triphosphate or IAP treatment reduced the number of the high-affinity state binding sites without altering the KD for PIA. Apomorphine (100 microM) increased the KD value 10-fold and decreased Bmax by approximately 20% for [3H]PIA. The effect of apomorphine on the KD value increase was irreversible and due to a conversion from high-affinity to low-affinity states for PIA. The effect was dose dependent and was mediated via D2 dopamine receptors, since the D2 antagonist sulpiride blocked the phenomenon. The inhibitory effect of PIA on adenylate cyclase activity was abolished by apomorphine treatment. There was no effect of apomorphine on displacement of [3H]quinuclidinyl benzilate (muscarinic ligand) binding by carbachol. These data suggest that A1 adenosine receptor binding and function are selectively modified by D2 dopaminergic agents.  相似文献   

20.
The inhibition of forskolin-stimulated adenylate cyclase activity by 5-hydroxytryptamine (5-HT) receptor agonists was measured in rat hippocampal membranes isolated from animals treated with vehicle or islet-activating protein (IAP; pertussis toxin). In vehicle-treated animals, 5-HT, 8-hydroxy-2-(di-n-propylamino)tetralin, buspirone, and gepirone were potent in inhibiting forskolin-stimulated adenylate cyclase activity with EC50 values of 60, 76, 376, and 530 nM, respectively. IAP treatment reduced by 30-55% the 5-HT1A agonist inhibition of adenylate cyclase activity via 5-HT1A receptors. The data indicate that the inhibitory guanine nucleotide-binding protein or Go (a similar GTP-binding protein of unknown function purified from brain) mediates the 5-HT1A agonist inhibition of hippocampal adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号