首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrate (NO3) export coupled with high inorganic nitrogen (N) concentrations in Alaskan streams suggests that N cycles of permafrost‐influenced ecosystems are more open than expected for N‐limited ecosystems. We tested the hypothesis that soil thaw depth governs inorganic N retention and removal in soils due to vertical patterns in the dominant N transformation pathways. Using an in situ, push–pull method, we estimated rates of inorganic N uptake and denitrification during snow melt, summer, and autumn, as depth of soil–stream flowpaths increased in the valley bottom of an arctic and a boreal catchment. Net NO3 uptake declined sharply from snow melt to summer and decreased as a nonlinear function of thaw depth. Peak denitrification rate occurred during snow melt at the arctic site, in summer at the boreal site, and declined as a nonlinear function of thaw depth across both sites. Seasonal patterns in ammonium (NH4+) uptake were not significant, but low rates during the peak growing season suggest uptake that is balanced by mineralization. Despite rapid rates of hydrologic transport during snow melt runoff, rates of uptake and removal of inorganic N tended to exceed water residence time during snow melt, indicating potential for retention of N in valley bottom soils when flowpaths are shallow. Decreased reaction rates relative to water residence time in subsequent seasons suggest greater export of inorganic N as the soil–stream flowpath deepens due to thawing soils. Using seasonal thaw as a proxy for longer term deepening of the thaw layer caused by climate warming and permafrost degradation, these results suggest increasing potential for export of inorganic N from permafrost‐influenced soils to streams.  相似文献   

2.
Results from thirteen years of weekly observations are presented on the nitrogen cycle in Lough Neagh. The data comprised catchment and atmospheric inputs, output via the outflow and calculated losses by sedimentation and denitrification. Nitrate-nitrogen in the rivers is the dominant input fraction and the nitrate loading has increased over the period observed. 52 % of the input N sediments to the lake bottom, but 65 % of this is lost by denitrification. In spite of increasing nitrogen inputs, the summer soluble nitrate concentrations have decreased due to uptake by a perpetual crop of the cyanobacterium Oscillatoria agardhii GOMONT .  相似文献   

3.
Denitrifying activity in a sediment from the freshwater part of a polluted estuary in northwest Europe was quantified using two independent approaches. High-resolution N(2)O microprofiles were recorded in sediment cores to which acetylene was added to the overlying water and injected laterally into the sediment. The vertical distribution of the rate of denitrification supported by nitrate uptake from the overlying water was then derived from the time series N(2)O concentration profiles. The rates obtained for the core incubations were compared to the rates predicted by a forward reactive transport model, which included rate expression for denitrification calibrated with potential rate measurements obtained in flowthrough reactors containing undisturbed, 1-cm-thick sediment slices. The two approaches yielded comparable rate profiles, with a near-surface, 2- to 3-mm narrow zone of denitrification and maximum in situ rates on the order of 200 to 300 nmol cm(-3) h(-1). The maximum in situ rates were about twofold lower than the maximum potential rate for the 0- to 1-cm depth interval of the sediment, indicating that in situ denitrification was nitrate limited. The experimentally and model-derived rates of denitrification implied that there was nitrate uptake by the sediment at a rate that was on the order of 50 (+/- 10) nmol cm(-2) h(-1), which agreed well with direct nitrate flux measurements for core incubations. Reactive transport model calculations showed that benthic uptake of nitrate at the site is particularly sensitive to the nitrate concentration in the overlying water and the maximum potential rate of denitrification in the sediment.  相似文献   

4.
Nitrate flux between sediment and water, nitrate concentration profile at the sediment-water interface, and in situ sediment denitrification activity were measured seasonally at the innermost part of Tokyo Bay, Japan. For the determination of sediment nitrate concentration, undisturbed sediment cores were sectioned into 5-mm depth intervals and each segment was stored frozen at −30°C. The nitrate concentration was determined for the supernatants after centrifuging the frozen and thawed sediments. Nitrate in the uppermost sediment showed a remarkable seasonal change, and its seasonal maximum of up to 400 μM was found in October. The directions of the diffusive nitrate fluxes predicted from the interfacial concentration gradients were out of the sediment throughout the year. In contrast, the directions of the total nitrate fluxes measured by the whole-core incubation were into the sediment at all seasons. This contradiction between directions indicates that a large part of the nitrate pool extracted from the frozen surface sediments is not a pore water constituent, and preliminary examinations demonstrated that the nitrate was contained in the intracellular vacuoles of filamentous sulfur bacteria dwelling on or in the surface sediment. Based on the comparison between in situ sediment denitrification activity and total nitrate flux, it is suggested that intracellular nitrate cannot be directly utilized by sediment denitrification, and the probable fate of the intracellular nitrate is hypothesized to be dissimilatory reduction to ammonium. The presence of nitrate-accumulating sulfur bacteria therefore may lower nature's self-purification capacity (denitrification) and exacerbate eutrophication in shallow coastal marine environments.  相似文献   

5.
Modeling nitrogen cycling in a coastal fresh water sediment   总被引:1,自引:0,他引:1  
Increased nitrogen (N) loading to coastal marine and freshwater systems is occurring worldwide as a result of human activities. Diagenetic processes in sediments can change the N availability in these systems, by supporting removal through denitrification and burial of organic N (Norg) or by enhancing N recycling. In this study, we use a reactive transport model (RTM) to examine N transformations in a coastal fresh water sediment and quantify N removal rates. We also assess the response of the sediment N cycle to environmental changes that may result from increased salinity which is planned to occur at the site as a result of an estuarine restoration project. Field results show that much of the Norg deposited on the sediment is currently remineralized to ammonium. A rapid removal of nitrate is observed in the sediment pore water, with the resulting nitrate reduction rate estimated to be 130 μmol N cm−2 yr−1. A model sensitivity study was conducted altering the distribution of nitrate reduction between dissimilatory nitrate reduction to ammonium (DNRA) and denitrification. These results show a 40% decline in sediment N removal as NO 3 reduction shifts from denitrification to DNRA. This decreased N removal leads to a shift in sediment-water exchange flux of dissolved inorganic nitrogen (DIN) from near zero with denitrification to 133 μmol N cm−2 yr−1 if DNRA is the dominant pathway. The response to salinization includes a short-term release of adsorbed ammonium. Additional changes expected to result from the estuarine restoration include: lower NO 3 concentrations and greater SO 4 2− concentrations in the bottom water, decreased nitrification rates, and increased sediment mixing. The effect of these changes on net DIN flux and N removal vary based on the distribution of DNRA versus denitrification, illustrating the need for a better understanding of factors controlling this competition.  相似文献   

6.
The objective of this study was to determine if plant roots have to take up nitrate at their maximum rate for achieving maximum yield. This was investigated in a flowing-solution system which kept nutrient concentrations at constant levels. Nitrate concentrations were maintained in the range 20 to 1000 μM. Maximum uptake rate for both species was obtained at 100 μM. Concentrations below 100 μM resulted in decreases in uptake rate per cm root (inflow) for both spinach and kohlrabi by 1/3 and 2/3, respectively. However, only with kohlrabi this caused a reduction in N uptake and yield. Thus indicating that this crop has to take up nitrate at the maximum inflow. Spinach, however, compensated for lower inflows by enhancing its root absorbing surface with more and longer roots hairs. Both species increased their root length by 1/3 at low nitrate concentrations.  相似文献   

7.
Nitrate and nitrite concentrations in the water and nitrous oxide and nitrite fluxes across the sediment-water interface were measured monthly in the River Colne estuary, England, from December 1996 to March 1998. Water column concentrations of N(2)O in the Colne were supersaturated with respect to air, indicating that the estuary was a source of N(2)O for the atmosphere. At the freshwater end of the estuary, nitrous oxide effluxes from the sediment were closely correlated with the nitrite concentrations in the overlying water and with the nitrite influx into the sediment. Increases in N(2)O production from sediments were about 10 times greater with the addition of nitrite than with the addition of nitrate. Rates of denitrification were stimulated to a larger extent by enhanced nitrite than by nitrate concentrations. At 550 microM nitrite or nitrate (the highest concentration used), the rates of denitrification were 600 micromol N.m(-2).h(-1) with nitrite but only 180 micromol N.m(-2).h(-1) with nitrate. The ratios of rates of nitrous oxide production and denitrification (N(2)O/N(2) x 100) were significantly higher with the addition of nitrite (7 to 13% of denitrification) than with nitrate (2 to 4% of denitrification). The results suggested that in addition to anaerobic bacteria, which possess the complete denitrification pathway for N(2) formation in the estuarine sediments, there may be two other groups of bacteria: nitrite denitrifiers, which reduce nitrite to N(2) via N(2)O, and obligate nitrite-denitrifying bacteria, which reduce nitrite to N(2)O as the end product. Consideration of free-energy changes during N(2)O formation led to the conclusion that N(2)O formation using nitrite as the electron acceptor is favored in the Colne estuary and may be a critical factor regulating the formation of N(2)O in high-nutrient-load estuaries.  相似文献   

8.
Robinson  David 《Plant and Soil》2001,232(1-2):41-50
The responses of roots to nitrogen- and phosphorus-rich patches of soil include proliferation of laterals and stimulation of nutrient inflow (uptake rate per unit root length) within the patch. Nitrate uptake from an N-rich patch is thereby maximised and, perhaps, compensates for an uneven supply of nitrate to the whole root system. Paradoxically, the often weak correlation between root length density and N uptake found in experiments on single plants and crop monocultures suggests that root proliferation in patches has only a minor compensatory influence on N capture. This paradox was resolved when it was realised that localised root proliferation during inter-specific competition for nitrate can lead to a strong association between root length density and nitrate capture. Here, a simple model of inter-specific competition is used to estimate the stimulation in inflow required in one plant to match the N capture of a competitor that responds only by root proliferation, and to estimate associated carbon costs. The model predicts that nitrate inflow must increase proportionally more than root length density to achieve the same N capture. For example, the N capture possible with a 10% increase in root length density can be matched by increasing N inflow by anything from 20% to 20-fold, depending on the initial conditions: the faster the rate of change in root length density, the greater the required relative increase in inflow. In those terms, proliferation would seem the better option, but one that may be more costly in terms of its carbon requirement.  相似文献   

9.
Nitrate is an important nitrogen source used by plants. Despite of the considerable variation in the amount of soil nitrate, plants keep cytosolic nitrate at a homeostatic controlled level. Here we describe a set of homeostatic controller motifs and their interaction that can maintain robust cytosolic nitrate homeostasis at fluctuating external nitrate concentrations and nitrate assimilation levels. The controller motifs are divided into two functional classes termed as inflow and outflow controllers. In the presence of high amounts of environmental nitrate, the function of outflow controllers is associated to efflux mechanisms removing excess of nitrate from the cytosol that is taken up by low-affinity transporter systems (LATS). Inflow controllers on the other hand maintain homeostasis in the presence of a high demand of nitrate by the cell relative to the amount of available environmental nitrate. This is achieved by either remobilizing nitrate from a vacuolar store, or by taking up nitrate by means of high-affinity transporter systems (HATS). By combining inflow and outflow controllers we demonstrate how nitrate uptake, assimilation, storage and efflux are integrated to a regulatory network that maintains cytosolic nitrate homeostasis at changing environmental conditions.  相似文献   

10.
The transport and deposition of anthropogenic nitrogen (N) to downwind ecosystems is significant and can be a dominant source of new N to many watersheds. Bacterially mediated denitrification in lake sediments may ameliorate the effects of N loading by permanently removing such inputs. We measured denitrification in sediments collected from lakes in the Colorado Rocky Mountains (USA) receiving elevated (5–8?kg?N?ha?1?y?1) or low (<2?kg?N?ha?1?y?1) inputs of atmospheric N deposition. The nitrate (NO3 ?) concentration was significantly greater in high-deposition lakes (11.3?μmol?l?1) compared to low-deposition lakes (3.3?μmol?l?1). Background denitrification was positively related to NO3 ? concentrations and we estimate that the sampled lakes are capable of removing a significant portion of N inputs via sediment denitrification. We also conducted a dose–response experiment to determine whether chronic N loading has altered sediment denitrification capacity. Under Michaelis–Menten kinetics, the maximum denitrification rate and half-saturation NO3 ? concentration did not differ between deposition regions and were 765?μmol?N?m?2?h?1 and 293?μmol?l?1?NO3 ?, respectively, for all lakes. We enumerated the abundances of nitrate- and nitrite-reducing bacteria and found no difference between high- and low-deposition lakes. The abundance of these bacteria was related to available light and bulk sediment resources. Our findings support a growing body of evidence that lakes play an important role in N removal and, furthermore, suggest that current levels of N deposition have not altered the abundance of denitrifying bacteria or saturated the capacity for sediment denitrification.  相似文献   

11.
Denitrifying activity in a sediment from the freshwater part of a polluted estuary in northwest Europe was quantified using two independent approaches. High-resolution N2O microprofiles were recorded in sediment cores to which acetylene was added to the overlying water and injected laterally into the sediment. The vertical distribution of the rate of denitrification supported by nitrate uptake from the overlying water was then derived from the time series N2O concentration profiles. The rates obtained for the core incubations were compared to the rates predicted by a forward reactive transport model, which included rate expression for denitrification calibrated with potential rate measurements obtained in flowthrough reactors containing undisturbed, 1-cm-thick sediment slices. The two approaches yielded comparable rate profiles, with a near-surface, 2- to 3-mm narrow zone of denitrification and maximum in situ rates on the order of 200 to 300 nmol cm−3 h−1. The maximum in situ rates were about twofold lower than the maximum potential rate for the 0- to 1-cm depth interval of the sediment, indicating that in situ denitrification was nitrate limited. The experimentally and model-derived rates of denitrification implied that there was nitrate uptake by the sediment at a rate that was on the order of 50 (± 10) nmol cm−2 h−1, which agreed well with direct nitrate flux measurements for core incubations. Reactive transport model calculations showed that benthic uptake of nitrate at the site is particularly sensitive to the nitrate concentration in the overlying water and the maximum potential rate of denitrification in the sediment.  相似文献   

12.
We measured denitrification and nitrate removal rates in cold seep sediments from the Gulf of Mexico. Heterotrophic potential denitrification rates were assayed in time-series incubations. Surficial sediments inhabited by Beggiatoa exhibited higher heterotrophic potential denitrification rates (32 μ N reduced day−1) than did deeper sediments (11 μ N reduced day−1). Nitrate removal rates were high in both sediment horizons. These nitrate removal rates translate into rapid turnover times (<1 day) for the nitrate pool, resulting in a faster turnover for the nitrate pool than for the sulfate pool. Together, these data underscore the rigorous nature of internal nitrogen cycling at cold seeps and the requirement for novel mechanisms to provide nitrate to the sediment microbial community.  相似文献   

13.
Nitrate flux between sediment and water, nitrate concentration profile at the sediment-water interface, and in situ sediment denitrification activity were measured seasonally at the innermost part of Tokyo Bay, Japan. For the determination of sediment nitrate concentration, undisturbed sediment cores were sectioned into 5-mm depth intervals and each segment was stored frozen at -30 degrees C. The nitrate concentration was determined for the supernatants after centrifuging the frozen and thawed sediments. Nitrate in the uppermost sediment showed a remarkable seasonal change, and its seasonal maximum of up to 400 microM was found in October. The directions of the diffusive nitrate fluxes predicted from the interfacial concentration gradients were out of the sediment throughout the year. In contrast, the directions of the total nitrate fluxes measured by the whole-core incubation were into the sediment at all seasons. This contradiction between directions indicates that a large part of the nitrate pool extracted from the frozen surface sediments is not a pore water constituent, and preliminary examinations demonstrated that the nitrate was contained in the intracellular vacuoles of filamentous sulfur bacteria dwelling on or in the surface sediment. Based on the comparison between in situ sediment denitrification activity and total nitrate flux, it is suggested that intracellular nitrate cannot be directly utilized by sediment denitrification, and the probable fate of the intracellular nitrate is hypothesized to be dissimilatory reduction to ammonium. The presence of nitrate-accumulating sulfur bacteria therefore may lower nature's self-purification capacity (denitrification) and exacerbate eutrophication in shallow coastal marine environments.  相似文献   

14.
N-starved free-living and polyvinyl-immobilized cells ofPhormidium laminosum (strain OH-1-pCl1) have been investigated in relation to their nitrate and nitrite uptake characteristics. N-deficient cells showed higher inorganic N-uptake rates than N-sufficient ones. The photosynthetic activities of the cells decreased progressively with the time of N-starvation. N-starved cells produced high amounts of exopolysaccharides, which appear to assist the immobilization process. Inorganic N-uptake by N-starved cells occurred in both light and dark under aerobic conditions. In anaerobiosis light was required for the uptake, confirming that the necessary energy might perhaps be derived from the respiratory electron transport chain under aerobiosis. Ammonium inhibited nitrate uptake but did not affect the uptake of nitrite. Initial nitrate and nitrite uptake rates were temperature-dependent and yielded hyperbolic curves when plotted against the N source concentration, indicating the existence of saturable transport system(s).  相似文献   

15.
Bartoli  Marco  Nizzoli  Daniele  Welsh  David T.  Viaroli  Pierluigi 《Hydrobiologia》2000,431(2-3):165-174
The short-term effects of sediment recolonisation by Nereis succinea on sediment-water column fluxes of oxygen and dissolved inorganic nitrogen, and rates of denitrification, were studied in microcosms of homogenised, sieved sediments. The added worms enhanced oxygen uptake by the sediments, due to the increased surface area provided by the burrow walls and the degree of stimulation was stable with time. Similarly, ammonium fluxes to the water column were stimulated by N. succinea, but declined over the 3 day incubation in all microcosms including the controls. Nitrate fluxes were generally greater in the faunated microcosms, but highly variable with time. Denitrification rates were positively stimulated by N. succinea populations, denitrification of water column nitrate was stimulated 10-fold in comparison to denitrification coupled to nitrification in the sediments. Rates of denitrification of water column nitrate were not significantly different from rates in undisturbed sediment cores with similar densities of N. succinea, whereas rates of coupled nitrification–denitrification were 3-fold lower in the experimental set-up. These results may reflect the relative growth rates of nitrifying and denitrifying bacteria, which allow more rapid colonisation of new burrow surfaces by denitrifier compared to nitrifier populations. The data indicate that recolonisation by burrowing macrofauna of the highly reduced sediments of the Sacca di Goro, Lagoon, Italy, following the annual dystrophic crisis, may play a significant role in the reoxidation and detoxification of the sediments. The increased rates of denitrification associated with the worm burrows, may promote nitrogen losses, but due to the low capacity of nitrifying bacteria to colonise the new burrow structures, these losses would be highly dependent upon water column nitrate concentrations.  相似文献   

16.
This study demonstrated the feasibility of a biological denitrification process using immobilized Pseudomonas stutzeri. The microbial cellulose (MC) from Acetobacter xylinum was used as the support material for immobilization of the bacterium. Nitrate removal took place mainly in the anoxic system. The effects of various operating conditions such as the initial nitrate concentration, pH, and carbon source on biological denitrification were demonstrated experimentally. The system demonstrated a high capacity for reducing nitrate concentrations under optimum conditions. The denitrification rate increased up to a maximal value of 1.6 kg NO3-N m−3 day−1 with increasing nitrate loading rate. Because of its porosity and purity, MC may be considered as appropriate supports for adsorbed immobilized cells. The simplicity of immobilization and high efficiency in operation are the main advantages of such systems. To date, the immobilization of microorganisms onto MC has not been carried out. The results of this research shows that a pilot bioreactor containing P. stutzeri immobilized on MC exhibited efficient denitrification with a relatively low retention time.  相似文献   

17.
Abstract The dissimilatory nitrate-reducing processes, denitrification, and dissimilatory nitrate-reduction to ammonium were studied in freshwater lake sediments within healthy and degrading Phragmites australis (reed) stands. The samples from the healthy vegetation site contained roots and rhizomes. Cores were supplied with 1.9–5.2 μg 15N-NO3 g−1 dry sediment in the laboratory and subsequently incubated for 8 h at 20°C, in the dark. The 15N compounds were determined before (natural percentage of 15N) and after 1 and 8 h of incubation. The uptake of 15N by the roots and rhizomes in the healthy vegetation was 61%. Nitrogen losses, interpreted as denitrification, accounted for 25 and 84% of the added 15N-NO3 in sediment from the healthy and degrading vegetation sites, respectively. The percentages of nitrate reduced to ammonium were 4 and 9% in sediment from the healthy vegetation and degrading vegetation sites, respectively. The percentage of 15N–total N in the sediment of the healthy vegetation site was 10%, whereas for the degrading vegetation site this percentage was 7%. The percentage of nitrate reduced to ammonium could be potentially underestimated by the percentage of 15N measured in the sediment. In this case, in healthy and degenerating P. australis stands, the percentage of produced ammonium accounted for 14–16%. The nitrate reduction rates were calculated based on an incubation period of one hour. The denitrification rate in sediment from the degrading vegetation site was higher than from the healthy vegetation site. The rate of dissimilatory nitrate reduction to ammonium was almost tenfold higher in sediment from the degrading vegetation site compared to sediment from the healthy vegetation site. The significantly lower percentages of dissimilatory nitrate reduction to ammonium and denitrification in the healthy stand compared to the degrading stand was probably due to the presence of roots and rhizomes. In the sediments of healthy and degrading P. australis stands, denitrification was the main nitrate-reducing process. Received: 24 July 1996; Accepted: 5 December 1996  相似文献   

18.
Seedlings of Sundangrass (Sorghum Sudanese [Piper] Stapf.) were grown 10 to 13 days of age in a nutrient solution containing nitrate and then placed under treatment conditions for 24 h before assays of nitrate assimilation were begun. Nitrate uptake was determined by its disappearance from the ambient solution. In vivo reduction of nitrate was determined by the overall balance between the amount taken up and the change in tissue concentration of nitrate during the experiments. Nitrate reductase activity was determined from tissue slices. In vivo reduction was strongly regulated by uptake in response to time and ambient nitrate concentration, temperature and light. Nitrate reduction responded to the concentration of nitrate supplied by uptake and by a storage pool, since reduction often exceeded uptake. Nitrate reductase activity in tissue slices was exponential in initial response to increasing temperature. After a 24-h equilibration period at each temperature, the activity was lower at higher temperatures. In contrast, actual reduction of nitrate increased linearly with increasing temperature between 15 and 24°C in the plants equilibrated 24 h at each temperature. Nitrate uptake and reduction were greatly inhibited under low light conditions, with reduction inhibited more than uptake., The effect of ambient nitrate, temperature, and light on the nitrate assimilatory processes help to explain observations reported on nitrate accumulation by Sudangrass forage.  相似文献   

19.
Three major reservoirs (Marne, Seine and Aube), situated in the upstream basin of the river Seine represent a storage capacity of 800 106 m3. In order to quantify the possible role of these reservoirs as a sink or source of nutrients and organic matter for the river system, an input/output mass-balance of suspended matter, organic carbon, inorganic nitrogen forms, phosphorus and reactive silica was established, providing reliable estimates of their retention/elimination and export. The study was carried out over 3 years (1993, 1994 and 1995) in differing hydrological conditions. The retention times varied from 0.3 to 0.8 year, depending on the reservoir and the year, but was longer in 1993 that was a drier year than 1994 and 1995, hydrologically quite similar.Regarding retention (or elimination) and export, the behaviour of the three studied reservoirs was similar. A clear loss or retention of nitrogen, phosphorus and silica was observed in the reservoirs and represented about 40% of the incoming flux of nitrate, 50% of silica, and 60% of phosphate. The retention was lower for total phosphorus than for phosphate. The reservoirs are also sites of suspended matter deposition except during the decennial drawdown, when suspended matter is exported. For inorganic nitrogen, the average amount of nitrate retained in the Seine basin reservoirs upstream from Paris is 5000 tonnes y–1 that is almost equal to the estimated retention by deposition or denitrification in river channel sediments for the whole drainage network. The retention in the reservoirs represents about 12% of the total flux of nitrate at the outlet of the basin upstream from Paris, and 5% at the mouth of the Seine River.We also calculated inlake C, N, P, Si budgets on the basis of direct process measurements. Measurements of planktonic primary and bacterial activity production led to annual net production of 4200 and 580 tonnes of carbon, respectively. A reasonable value (450 tonnes of carbon) of grazing was calculated. Corresponding N, P, Si fluxes were drawn from appropriate C:N:P:Si ratios. Benthic fluxes were measured with bell jars. The retention of P and Si represents a small fraction of important internal fluxes of phytoplanktonic uptake and recycling, while inorganic nitrogen retention depends mostly on benthic denitrification. The behaviour of P and Si differs in that P is mainly recycled in the water column, while Si dissolution occurs at the sediment interface. Nitrogen is recycled in both the planktonic and the benthic phase.  相似文献   

20.
Since the middle of 1990s the trend of Lake Balaton towards an increasingly trophic status has been reversed, but N2-fixing cyanobacteria are occasionally dominant, endangering water quality in summer. The sources of nitrogen and its uptake by growing phytoplankton were therefore studied. Experiments were carried out on samples collected from the middle of the Eastern (Siófok) and Western (Keszthely) basins between February and October 2001. Ammonium, urea and nitrate uptake and ammonium regeneration were measured in the upper 5-cm layer of sediment using the 15N-technique. Ammonium was determined by an improved microdiffusion assay. N2 fixation rates were measured by the acetylene-reduction method. Ammonium regeneration rates in the sediment were similar in the two basins. They were relatively low in winter (0.13 and 0.16 μg N cm?3 day?1 in the Eastern and Western basin, respectively), increased slowly in the spring (0.38 and 0.45 μg N cm?3 day?1) and peaked in late summer (0.82 and 1.29 μg N cm?3 day?1, respectively). Ammonium uptake was predominant in spring in the Eastern basin and in summer in the Western basin, coincident with the cyanobacterial bloom. The amount of N2 fixed was less than one third of the internal load during summer when external N loading was insignificant. Potentially, the phytoplankton N demand could be supported entirely by the internal N load via ammonium regeneration in the water column and sediment. However, the quantity of N from ammonium regeneration in the upper layer of sediment combined with that from the water column would limit the standing phytoplankton crop in spring in both basins and in late summer in the Western basin, especially when the algal biomass increases suddenly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号