首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel cell cycle blocking agent profoundly suppressed the proliferation of mitogen-stimulated T lymphocytes. The carboxythiazole derivative arrested cells in the G1 phase of the cell cycle but did not inhibit the induction of cell surface receptors for either interleukin-2 or transferrin. The uncoupling of transferrin receptor expression from DNA synthesis indicated that a previously undefined restriction point in the cell cycle has been identified which occurs after transferrin receptor expression in late G1 and just prior to the initiation of DNA replication in S phase. T cells incubated in an inhibitory dose of the carboxythiazole derivative resumed cell cycle progression subsequent to its removal, indicating that the compound reversibly arrests cells at the late G1 restriction point. In contrast to other techniques which have been inefficient in achieving T cell synchronization, T cells released from the block mediated by the carboxythiazole compound progress through S phase with a considerable degree of synchrony.  相似文献   

2.
Measles virus infection of unstimulated B lymphocytes suppresses both proliferation and differentiation into immunoglobulin-secreting cells. However, mitogenic stimulation of these infected cells results in cell volume enlargement, rapid RNA synthesis, and the expression of cell surface activation antigens 4F2, HLA-DS, and transferrin receptor. The cellular genes c-myc and histone 2B are induced during early G1 and S phase of the cell cycle, respectively, and viral RNA synthesis can be detected during this interval. However, total RNA synthesis is decreased at 48 h after stimulation, and the histone 2B RNA steady-state level at 48 h is fivefold less than that in uninfected cells. This sequence of events defines an arrest in the G1 phase of the cell cycle in measles virus-infected B cells.  相似文献   

3.
4.
In most cells, transferrin receptor (TfR1)-mediated endocytosis is a major pathway for cellular iron uptake. We recently cloned the human transferrin receptor 2 (TfR2) gene, which encodes a second receptor for transferrin (Kawabata, H., Yang, R., Hirama, T., Vuong, P. T., Kawano, S., Gombart, A. F., and Koeffler, H. P. (1999) J. Biol. Chem. 274, 20826-20832). In the present study, the regulation of TfR2 expression and function was investigated. A select Chinese hamster ovary (CHO)-TRVb cell line that does not express either TfR1 or TfR2 was stably transfected with either TfR1 or TfR2-alpha cDNA. TfR2-alpha-expressing cells had considerably lower affinity for holotransferrin when compared with TfR1-expressing CHO cells. Interestingly, in contrast to TfR1, expression of TfR2 mRNA in K562 cells was not up-regulated by desferrioxamine (DFO), a cell membrane-permeable iron chelator. In MG63 cells, expression of TfR2 mRNA was regulated in the cell cycle with the highest expression in late G(1) phase and no expression in G(0)/G(1). DFO reduced cell proliferation and DNA synthesis of CHO-TRVb control cells, whereas it had little effect on TfR2-alpha-expressing CHO cells when measured by clonogenic and cell cycle analysis. In addition, CHO cells that express TfR2-alpha developed into tumors in nude mice whereas CHO control cells did not. In conclusion, TfR2 expression may be regulated by the cell cycle rather than cellular iron status and may support cell growth both in vitro and in vivo.  相似文献   

5.
Type beta transforming growth factor (TGF beta) is a polypeptide that may influence the growth of a variety of cell types in a positive or negative fashion. In this study we show that TGF beta markedly inhibits DNA synthesis in normal and neoplastic human B lymphocytes stimulated to proliferate with anti-immunoglobulins and B-cell growth factor (BCGF). Although TGF beta was needed during the initial 12 h of the culture to promote optimal inhibition, we found that it had little or no effect on several early to intermediate parameters of cell activation [( Ca2+]i increase, c-myc mRNA increase, cellular enlargement, RNA increase, and the increase in the expression of the 4F2 activation antigen). In contrast, TGF beta almost completely blocked the induction of transferrin receptor expression, which normally occurs in the late G1 phase of the cell cycle. Therefore, we conclude that TGF beta treatment leads to arrest of the cells in the middle to late G1 phase, prior to transferrin receptor expression.  相似文献   

6.
We report that sustained increase of intracellular calcium ion concentration and protein kinase C (PKC) activation maintained throughout the G1 phase of cell cycle do not provide sufficient signals to cause S-phase entry in rabbit B cells, and that additional signals transduced by IL-2 and IL-2 receptor interaction are essential for G1 to S transition. We have shown earlier that rabbit B cells can be activated to produce IL-2 and express functional IL-2 receptors after treatment with ionomycin and PMA. Herein we have compared the response of rabbit PBLs, which contain about 50% T cells, with those of purified B cells. After activation with ionomycin or PMA, comparable numbers of PBLs and B cells entered the cell cycle; but DNA synthesis by the PBL cultures was three to four times higher than that of cultures of purified B cells. Interestingly, IL-2 production by the PBL cultures was also three to four times higher than in B cell cultures, suggesting an involvement of IL-2 in inducing DNA synthesis in these cells. The hypothesis that IL-2, which is produced in early G1, acts in late G1 and is required for G1 to S transition in B cells was supported by the following observations: (i) IL-2 production by B cells was detected as early as 6 hr after activation and preceded DNA synthesis by at least 24 hr. (ii) B cell blasts in G1 (produced by treatment of resting B cells with ionomycin and PMA) showed DNA synthesis in response to IL-2, but showed very little DNA synthesis in response to restimulation with ionomycin and PMA. (iii) A polyclonal rabbit anti-human IL-2 antibody caused nearly complete inhibition of DNA synthesis by B cells activated by ionomycin and PMA. (iv) A PKC inhibitor, K252b, inhibited DNA synthesis in ionomycin and PMA-stimulated cells if added at the beginning of culture but was not inhibitory if added 16 hr later. We conclude that increased [Ca2+]i and PKC activation are not sufficient signals for G1 to S transition in B cells; entry into S is signaled by IL-2, and IL-2-mediated signal transduction probably does not involve increased [Ca2+]i or PKC activation.  相似文献   

7.
Recent studies have demonstrated that 1,25-dihydroxyvitamin D3 (calcitriol), the most biologically active metabolite of vitamin D, is a potent inhibitor of both lectin- and antigen-driven human T lymphocyte proliferation. To better characterize this effect, we performed cell cycle analysis of both untreated and calcitriol-treated peripheral blood mononuclear cells after PHA stimulation. By using the metachromatic dye acridine orange and flow cytometry, we found that calcitriol blocks the transition from the early, low RNA compartment of G1 (G1A) to the late, higher RNA compartment of G1 (G1B). Consistent with this observation was the inability of exogenous IL 1 or phorbol myristic acetate to overcome calcitriol's suppression of DNA synthesis. Indomethacin slightly reversed calcitriol's inhibition of transition from early to late G1, suggesting a minor, prostaglandin-dependent component to calcitriol's antiproliferative activity. Finally, by using the monoclonal antibodies anti-Tac and OKT9, we found that calcitriol had no effect on IL 2 receptor expression, an early G1 event, but markedly inhibited transferrin receptor expression, an IL 2-dependent, late G1 event. Thus, analysis of calcitriol's effects on the expression of these T cell activation antigens provides further evidence of the cell cycle specificity of calcitriol's action in regulating human T lymphocyte proliferation.  相似文献   

8.
Voltage-dependent K+ channels (VDPC) are expressed in most mammalian cells and involved in the proliferation and activation of lymphocytes. However, the role of VDPC in macrophage responses is not well established. This study was undertaken to characterize VDPC in macrophages and determine their physiological role during proliferation and activation. Macrophages proliferate until an endotoxic shock halts cell growth and they become activated. By inducing a schedule that is similar to the physiological pattern, we have identified the VDPC in non-transformed bone marrow-derived macrophages and studied their regulation. Patch clamp studies demonstrated that cells expressed outward delayed and inwardly rectifying K+ currents. Pharmacological data, mRNA, and protein analysis suggest that these currents were mainly mediated by Kv1.3 and Kir2.1 channels. Macrophage colony-stimulating factor-dependent proliferation induced both channels. Lipopolysaccharide (LPS)-induced activation differentially regulated VDPC expression. While Kv1.3 was further induced, Kir2.1 was down-regulated. TNF-alpha mimicked LPS effects, and studies with TNF-alpha receptor I/II double knockout mice demonstrated that LPS regulation mediates such expression by TNF-alpha-dependent and -independent mechanisms. This modulation was dependent on mRNA and protein synthesis. In addition, bone marrow-derived macrophages expressed Kv1.5 mRNA with no apparent regulation. VDPC activities seem to play a critical role during proliferation and activation because not only cell growth, but also inducible nitric-oxide synthase expression were inhibited by blocking their activities. Taken together, our results demonstrate that the differential regulation of VDPC is crucial in intracellular signals determining the specific macrophage response.  相似文献   

9.
Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTENfl/fl mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo.  相似文献   

10.
This study provides direct correlation via dual parameter flow cytometry (simultaneous assessment of immunofluorescence and DNA content) between mixed lymphocyte reaction (MLR) responder cell entry into the S/G2/M phases of the cell cycle with the kinetics of expression of two activation-associated cell surface proteins, Tac (IL 2 receptor) and 4F2 (unknown metabolic function). A small population of activated cells was identifiable by expression of both Tac and 4F2 antigens before peak DNA synthesis in the MLR. This population of activation antigen-positive cells expanded linearly in size from days 3 to 7 of culture. Treatment of immature MLR cultures with anti-4F2 Mab and complement (C) before DNA synthesis (treatment on day 3, peak DNA synthesis on days 5 to 6) resulted in blunted proliferation and activation antigen expression when the same culture was analyzed after maturation on day 6, indicating that the activated population had been previously detected and removed by anti-4F2 Mab + C. The 4F2 antigen was expressed on a greater percentage of cells in the MLR at all times (days 3 to 9) than was Tac, was present on virtually all S/G2/M phase responder cells, and a large fraction of cells remained intensely 4F2+ subsequent to peak DNA synthesis. In contrast, after initially preceding responder cell entry into the S phase of the cell cycle, the kinetics of Tac antigen expression closely paralleled the kinetics of responder cell proliferation. A subpopulation of cycling responder cells was noted in all MLR cultures studied that expressed Tac antigen weakly or not at all. Cells within both T4 and T8 cell subsets proliferate with similar kinetics in response to alloantigen. The possibility that activation antigens can be utilized to study effector cell generation in the MLR and that this flow cytometric technique may be utilized to analyze the response to various alloantigens is discussed.  相似文献   

11.
We demonstrated previously that leukotriene D4 (LTD4) regulates proliferation of intestinal epithelial cells through a CysLT receptor by protein kinase C (PKC)epsilon-dependent stimulation of the mitogen-activated protein kinase ERK1/2. Our current study provides the first evidence that LTD4 can activate 90-kDa ribosomal S6 kinase (p90RSK) and cAMP-responsive element-binding protein (CREB) via pertussis-toxin-sensitive Gi protein pathways. Transfection and inhibitor experiments revealed that activation of p90RSK, but not CREB, is a PKCepsilon/Raf-1/ERK1/2-dependent process. LTD4-mediated CREB activation was not affected by expression of kinase-dead p90RSK but was abolished by transfection with the regulatory domain of PKCalpha (a specific dominant-inhibitor of PKCalpha). Kinase-negative mutants of p90RSK and CREB (K-p90RSK and K-CREB) blocked the LTD4-induced increase in cell number and DNA synthesis (thymidine incorporation). Compatible with these results, flow cytometry showed that LTD4 caused transition from the G0/G1 to the S+G2/M cell cycle phase, indicating increased proliferation. Similar treatment of cells transfected with K-p90RSK resulted in cell cycle arrest in the G0/G1 phase, consistent with a role of p90RSK in LTD4-induced proliferation. On the other hand, expression of K-CREB caused a substantial buildup in the sub-G0/G1 phase, suggesting a role for CREB in mediating LTD4-mediated survival in intestinal epithelial cells. Our results show that LTD4 regulates proliferation and survival via distinct intracellular signaling pathways in intestinal epithelial cells.  相似文献   

12.
The role of the transferrin receptor in human B lymphocyte activation   总被引:11,自引:0,他引:11  
Transferrin receptors are expressed on proliferating cells and are required for their growth. Transferrin receptors can be detected after, but not before, mitogenic stimulation of normal peripheral blood T and B cells. T cells demonstrate a functional requirement for transferrin receptors in the activation process. These receptors, in turn, are induced to appear by T cell growth factor (interleukin 2). In the experiments reported here, we examined the regulation of transferrin receptor expression on activated human B cells and whether these receptors are necessary for activation to occur. Activation was assessed by studying both proliferation and immunoglobulin secretion. We determined that transferrin receptor expression on B cells is regulated by a factor contained in supernatants of mitogen-stimulated T cells (probably B cell growth factor). This expression is required for proliferation to occur, because antibody to transferrin receptor (42/6) blocks B cell proliferation. Induction of immunoglobulin secretion, however, although dependent on phytohemagglutinin-treated T cell supernatant, is not dependent on transferrin receptor expression and can occur in mitogen-stimulated cells whose proliferation has been blocked by anti-transferrin receptor antibody. These findings support a model for B cell activation in which mitogen (or antigen) delivers two concurrent but distinct signals to B cells: one, dependent on B cell growth factor and transferrin receptor expression, for proliferation; and a second, dependent on T cell-derived factors and not requiring transferrin receptors, which leads to immunoglobulin secretion.  相似文献   

13.
In this study, we examined the role of the bumetanide-sensitive Na+/K+/Cl- cotransport in the mitogenic signal of human skin fibroblast proliferation. The Na+/K+/Cl- cotransport was dramatically stimulated by either fetal calf serum, or by recombinant growth factors, added to quiescent G0/G1 human skin fibroblasts. The following mitogens, FGF, PDGF, alpha-thrombin, insulin-like growth factor-1, transforming growth factor-alpha, and the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate, all stimulated the Na+/K+/Cl- cotransport. In addition, all the above mitogens induced DNA synthesis in the synchronized human fibroblasts. In order to explore the role of the Na+/K+/Cl- cotransport in the mitogenic signal, the effect of two specific inhibitors of the cotransport, furosemide and bumetanide, was tested on cell proliferation induced by the above recombinant growth factors. Bumetanide and furosemide inhibited synchronized cell proliferation as was measured by (a) cell exit from the G0/G1 phase measured by the use of flow cytometry, (b) cell entering the S-phase, determined by DNA synthesis, and (c) cell growth, measured by counting the cells. The inhibition by furosemide and bumetanide was reversible, removal of these compounds, completely released the cells from the block of DNA synthesis. In addition, the two drugs inhibited DNA synthesis only when added within the first 2-6 h of cell release. These results indicate that the effect of these drugs is specific, and is not due to an indirect toxic effect. This study clearly demonstrates that the growth factor-induced activation of the Na+/K+/Cl- cotransport plays a major role in the mitogenic signaling pathway of the human fibroblasts.  相似文献   

14.
We have previously reported that the hEAG K+ channels are responsible for the potential membrane hyperpolarization that induces human breast cancer cell progression into the G1 phase of the cell cycle. In the present study, we evaluate the role and functional expression of the intermediate-conductance Ca2+-activated K+ channel, hIK1-like, in controlling cell cycle progression. Our results demonstrate that hIK1 current density increased in cells synchronized at the end of the G1 or S phase compared with those in the early G1 phase. This increased current density paralleled the enhancement in hIK1 mRNA levels and the highly negative membrane potential. Furthermore, in cells synchronized at the end of G1 or S phases, basal cytosolic Ca2+ concentration ([Ca2+]i) was also higher than in cells arrested in early G1. Blocking hIK1 channels with a specific blocker, clotrimazole, induced both membrane potential depolarization and a decrease in the [Ca2+]i in cells arrested at the end of G1 and S phases but not in cells arrested early in the G1 phase. Blocking hIK1 with clotrimazole also induced cell proliferation inhibition but to a lesser degree than blocking hEAG with astemizole. The two drugs were essentially additive, inhibiting MCF-7 cell proliferation by 82% and arresting >90% of cells in the G1 phase. Thus, although the progression of MCF-7 cells through the early G1 phase is dependent on the activation of hEAG K+ channels, when it comes to G1 and checkpoint G1/S transition, the membrane potential appears to be primarily dependent on the hIK1-activity level. breast cancer; calcium-activated potassium channels; proliferation  相似文献   

15.
There is accumulating evidence that TGF beta 1 is an important immunoregulatory molecule. Here we report evidence that TGF beta 1 has potent effects on murine B cells. It is profoundly inhibitory to the proliferation of quiescent B cells activated in model systems using both thymus-independent and thymus-dependent stimuli and arrests cells predominantly at the G1 cell-cycle stage. It also blocks the proliferation of B cell blasts, with a similar accumulation at stage G1. In parallel with this antiproliferative effect, TGF beta 1 inhibits induction of the expression of a series of "activation Ag" including transferrin receptor, RL388, and Ly-6, in mitogen-stimulated B cells. It also inhibits the induction of Ly-6 expression by IL-4, a nonmitogenic stimulus. In contrast to these negative influences, TGF beta 1 induces modestly increased expression of MHC class II Ag in quiescent B cells, and more marked increases in both B cell blasts and mitogen-stimulated cells. We speculate that in the appropriate context TGF beta 1 may be a cytokine that promotes productive B cell-Th cell interaction.  相似文献   

16.
Immunosuppression in mice bearing plasma cell tumors (PC-mice) provides a model system for the study of negative B cell regulation. Our previous studies demonstrated that B cell proliferation is suppressed in these mice by a cascade of interactions involving macrophages and soluble factors. The present report pinpoints the G1 phase of the cell cycle as the stage of B cell proliferation inhibited in PC-mice. Modulation of surface immunoglobulin (sIg) with anti-mu, an early membrane activation event, occurred normally on B cells from the spleens of PC-mice. However, examination of the size profile and the expression of sIgD and sIgM on B cells from the spleens of PC-mice showed an accumulation of large-sized, low intensity sIgD+ cells, suggesting a block in B cell activation in the late G1 phase of the cell cycle. This was confirmed by experiments in vitro that demonstrated that although LPS-stimulated B cells from the spleens of PC-mice enlarged to a size characteristic of G1 phase, most did not additionally enlarge into S phase even after 3 days of culture, nor did they incorporate significant amounts of [3H]thymidine. Additional confirmation of a block in late G1 was obtained by using analysis of [3H]thymidine incorporation, cell size, and cell cycle after normal cells were cultured in supernatants from cloned PC lines containing the factor(s) that initiates the cascade of events leading to suppression of B cell proliferation. The relevance of these findings to PC-induced immunosuppression and to the regulation of normal B cell proliferation during the G1 phase of the cell cycle is discussed.  相似文献   

17.
Transferrin receptor expression is essential for the proliferation of both normal and malignant T cells. While transferrin receptor expression in normal T cells is tightly coupled to interleukin-2 receptor expression, transferrin receptor expression in malignant cells is usually constitutive and is released from this constraint. Temporally, the appearance of these membrane receptors is preceded by changes in the expression of the proto-oncogenes c-myc and c-myb. In addition, although an increase in the level of intracellular free calcium occurs early in the sequence of T-cell activation, the activation events dependent on this calcium flux have not been resolved. In the present study we report that diltiazem, an ion channel-blocking agent that inhibits calcium influx, arrested the growth in vitro of both normal and malignant human T cells in the G1 phase of the cell cycle. However, diltiazem did not inhibit the expression of c-myc or interleukin-2 receptor mRNA and protein in normal mitogen-activated T cells or the constitutive expression of c-myc and c-myb mRNA in malignant T cells (T acute lymphoblastic leukemia cells). In contrast, diltiazem prevented the induction of transferrin receptor (mRNA and protein) in normal T cells and caused a progressive loss of transferrin receptor (mRNA and protein) in malignant T cells. These data demonstrate that diltiazem can dissociate several growth-related processes normally occurring in G1 and thereby disrupt the biochemical cascade leading to cell proliferation.  相似文献   

18.
In a previous work, we have reported that the ionic nature of the outward current recorded in MCF-7 cells was that of a K+ current. In this study, we have identified a Ca2+-activated K+ channel not yet described in MCF-7 human breast cancer cells. In cells arrested in the early G1 (depolarized cells), increasing [Ca2+]i induced both a shift in the I-V curve toward more negative potentials and an increase in current amplitude at negative and more at positive potential. Currents were inhibited by r-iberiotoxin (r-IbTX, 50 nM) and charybdotoxin (ChTX, 50 nM). These data indicate that human breast cancer cells express large-conductance Ca2+-activated K+ (BK) channels. BK current-density increased in cells synchronized at the end of G1, as compared with those in the early G1 phase. This increased current-density paralleled the enhancement in BK mRNA levels. Blocking BK channels with r-IbTX, ChTX or both induced a slight depolarization in cells arrested in the early G1, late G1, and S phases and accumulated cells in the S phase, but failed to induce cell proliferation. Thus, the expression of the BK channels was cell-cycle-dependent and seems to contribute more to the S phase than to the G1 phase. However, these K+ channels did not regulate the cell proliferation because of their minor role in the membrane potential.  相似文献   

19.
Bai J  Liu XS  Xu YJ  Zhang ZX  Xie M  Ni W 《生理学报》2007,59(3):311-318
本文旨在探讨细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)在慢性支气管哮喘大鼠气道平滑肌细胞(airway smooth muscle cells,ASMCs)增殖中的作用。建立慢性哮喘大鼠模型,用ERK激动剂表皮生长因子(epidermal growth factor,EGF)和抑制剂PD98059干预慢性哮喘大鼠ASMCs的培养。采用流式细胞仪、四甲基偶氮唑盐(MTT)法、^3H-thymidine(TdR)掺入法和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)免疫组织化学法检测ASMCs增殖情况,观察ERK信号通路对ASMCs增殖的影响。RT-PCR和Western blot检测ERK mRNA和ERK1/2、磷酸化ERK1/2(p-ERK1/2)蛋白的表达。与正常对照组ASMCs比较,慢性哮喘组ASMCs的G0/G1期细胞所占比例明显减少,S+G2/M期细胞所占比例增高;吸光度(A490)值、细胞DNA合成量和PCNA阳性表达量均明显增加,ERK mRNA、ERK1/2蛋白、P-ERK1/2蛋白的表达量以及ERK活化率显著增高。经PD98059干预之后,慢性哮喘组ASMCs的S+G2/M期细胞所占比例、A490值、细胞DNA合成量和PCNA阳性表达量明显降低,ERK mRNA、ERK1/2蛋白、p-ERK1/2蛋白的表达量以及ERK活化率显著降低。经EGF干预后,慢性哮喘组ASMCs的S+G2/M期细胞所占比例、A490值、细胞DNA合成量和PCNA阳性表达量进一步增高,而这一作用可以被PD98059抑制。以上结果提示,慢性哮喘大鼠ASMCs内源性增殖活性增加,ERK1/2参与其增殖活性的调控,ERK信号通路在哮喘气道重建的ASMCs增殖调控中具有重要作用。  相似文献   

20.
The HNK-1 (Leu 7) differentiation antigen defines a subpopulation of human granular lymphocytes with natural killer (NK) and K cell function. In this study, we investigated whether HNK-1+ cells, identified with the monoclonal antibody and purified with a fluorescence-activated cell sorter (FACS), could function as suppressor cells. The results demonstrated that purified HNK-1+ cells efficiently suppressed both PWM-induced IgG production by B cells and T cell proliferation in mixed lymphocyte reactions (MLR). Manifestation of this suppressor cell activity required immune complex activation and was partially sensitive to 2000 rad irradiation. This suppressor cell activity was predominantly mediated by a subset of HNK-1+ cells that have previously been shown to have maximum NK function and lack expression of the E rosette (ER) receptor and T cell antigens (e.g., T3 and T8). Thus, HNK-1+ER- cells suppressed a MLR by an average 52%; HNK-1+ER+ were one-half as efficient, causing an average 23% suppression. For comparison, we also examined the characteristics of Leu 2a+ suppressor T lymphocytes. In contrast to HNK-1+ cells, unactivated Leu 2a+ cells suppressed both B and T cell responses. This suppressor activity was not augmented by immune complex activation and was absolutely radio-sensitive in PWM assays. HNK-1+ cells, especially the HNK+ER- subset, can therefore mediate suppressor cell function in addition to their spontaneous cytotoxic function. Furthermore, some of their suppressor cell properties are distinct from those attributed to other types of suppressor lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号