首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have found that chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 microM CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orients the elongation of agravitropic mutant aux1-7 roots toward the gravity. The CSI-induced restoration of gravitropic response in aux1-7 roots was not observed in other agravitropic mutants, axr2 and eir1-1. Because the aux1-7 mutant is reduced in sensitivity to auxin and ethylene, we examined the effects of CSI on another auxin-resistant mutant, axr1-3, and ethylene-insensitive mutant ein2-1. In aux1-7 roots, CSI stimulated the uptake of [(3)H]indole-3-acetic acid (IAA) and induced gravitropic bending. In contrast, in wild-type, axr1-3, and ein2-1 roots, CSI slowed down the rates of gravitropic bending and inhibited IAA uptake. In the null allele of aux1, aux1-22, the agravitropic nature of the roots and IAA uptake were not affected by CSI. This close correlation between auxin uptake and gravitropic bending suggests that CSI may regulate gravitropic response by inhibiting or stimulating the uptake of endogenous auxin in root cells. CSI exhibits selective influence toward IAA versus 1-naphthaleneacetic acid as to auxin-induced inhibition in root growth and auxin uptake. The selective action of CSI toward IAA along with the complete insensitivity of the null mutant aux1-22 toward CSI strongly suggest that CSI specifically interacts with AUX1 protein.  相似文献   

3.
The AXR6 gene is required for auxin signaling in the Arabidopsis embryo and during postembryonic development. One of the effects of auxin is to stimulate degradation of the Aux/IAA auxin response proteins through the action of the ubiquitin protein ligase SCF(TIR1). Here we show that AXR6 encodes the SCF subunit CUL1. The axr6 mutations affect the ability of mutant CUL1 to assemble into stable SCF complexes resulting in reduced degradation of the SCF(TIR1) substrate AXR2/IAA7. In addition, we show that CUL1 is required for lateral organ initiation in the shoot apical meristem and the inflorescence meristem. These results indicate that the embryonic axr6 phenotype is related to a defect in SCF function and accumulation of Aux/IAA proteins such as BDL/IAA12. In addition, we show that CUL1 has a role in auxin response throughout the life cycle of the plant.  相似文献   

4.
The recessive mutations aux1 and axr1 of Arabidopsis confer resistance to the plant hormone auxin. The axr1 mutants display a variety of morphological defects. In contrast, the only morphological defect observed in aux1 mutants is a loss of root gravitropism. To learn more about the function of these genes in auxin response, the expression of the auxin-regulated gene SAUR-AC1 in mutant and wild-type plants has been examined. It has been found that axr1 plants display a pronounced deficiency in auxin-induced accumulation of SAUR-AC1 mRNA in seedlings as well as rosette leaves and mature roots. In contrast, the aux1 mutation has a modest effect on auxin induction of SAUR-AC1. To determine if the AUX1 and AXR1 genes interact to facilitate auxin response, plants which are homozygous for both aux1 and axr1 mutations have been constructed and characterized. The two mutations are additive in their effects on auxin response, suggesting that each mutation confers resistance by a different mechanism. However, the morphology of double mutant plants indicates that there is an inter-action between the AXR1 and AUX1 genes. In mature plants, the aux1-7 mutation acts to partially suppress the morphological defects conferred by the axr1-12 mutation. This suppression is not accompanied by an increase in auxin response, as measured by SAUR-AC1 expression, suggesting that the interaction between the AUX1 and AXR1 genes is indirect.  相似文献   

5.
Auxin plays a pivotal role in many facets of plant development. It acts by inducing the interaction between auxin‐responsive [auxin (AUX)/indole‐3‐acetic acid (IAA)] proteins and the ubiquitin protein ligase SCFTIR to promote the degradation of the AUX/IAA proteins. Other cofactors and chaperones that participate in auxin signaling remain to be identified. Here, we characterized rice (Oryza sativa) plants with mutations in a cyclophilin gene (OsCYP2). cyp2 mutants showed defects in auxin responses and exhibited a variety of auxin‐related growth defects in the root. In cyp2 mutants, lateral root initiation was blocked after nuclear migration but before the first anticlinal division of the pericycle cell. Yeast two‐hybrid and in vitro pull‐down results revealed an association between OsCYP2 and the co‐chaperone Suppressor of G2 allele of skp1 (OsSGT1). Luciferase complementation imaging assays further supported this interaction. Similar to previous findings in an Arabidopsis thaliana SGT1 mutant (atsgt1b), degradation of AUX/IAA proteins was retarded in cyp2 mutants treated with exogenous 1‐naphthylacetic acid. Our results suggest that OsCYP2 participates in auxin signal transduction by interacting with OsSGT1.  相似文献   

6.
Aux/IAA proteins are phosphorylated by phytochrome in vitro   总被引:22,自引:0,他引:22       下载免费PDF全文
  相似文献   

7.
Re-orientation of Arabidopsis seedlings induces a rapid, asymmetric release of the growth regulator auxin from gravity-sensing columella cells at the root apex. The resulting lateral auxin gradient is hypothesized to drive differential cell expansion in elongation-zone tissues. We mapped those root tissues that function to transport or respond to auxin during a gravitropic response. Targeted expression of the auxin influx facilitator AUX1 demonstrated that root gravitropism requires auxin to be transported via the lateral root cap to all elongating epidermal cells. A three-dimensional model of the root elongation zone predicted that AUX1 causes the majority of auxin to accumulate in the epidermis. Selectively disrupting the auxin responsiveness of expanding epidermal cells by expressing a mutant form of the AUX/IAA17 protein, axr3-1, abolished root gravitropism. We conclude that gravitropic curvature in Arabidopsis roots is primarily driven by the differential expansion of epidermal cells in response to an influx-carrier-dependent auxin gradient.  相似文献   

8.
生长素影响植物多种生理过程,有报道显示生长素可能影响植物对逆境胁迫的反应.我们利用cDNA阵列技术鉴定拟南芥(Arabidopsis thaliana (L.) Heynh.)的生长素应答基因,发现多个胁迫应答基因受生长素抑制,包括Arabidopsis homolog of MEK kinase1 (ATMEKK1),RelA/SpoT homolog 3 (At-RSH3),Catalase 1 (Cat1) 和Ferritin 1 (Fer1),说明生长素可调节胁迫应答基因的表达.此外,我们还证明吲哚乙酸(IAA)合成途径中的腈水解酶基因nitrilase 1 (NIT1) 和nitrilase 2 (NIT2) 受盐胁迫诱导,提示在逆境条件下IAA的合成可能随之增加.我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导,发现胁迫应答基因在野生型和生长素不敏感突变体auxin resistant 2 (axr2) 中可被盐胁迫诱导,而在auxin resistant 1-3 (axr1-3)中则不被诱导,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径.  相似文献   

9.
The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 microM), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability.  相似文献   

10.
IAA17/AXR3: biochemical insight into an auxin mutant phenotype   总被引:22,自引:0,他引:22       下载免费PDF全文
The Aux/IAA genes are rapidly and specifically induced by the plant hormone auxin. The proteins encoded by this gene family are short-lived nuclear proteins that are capable of homodimerizing and heterodimerizing. Molecular, biochemical, and genetic data suggest that these proteins are involved in auxin signaling. The pleiotropic morphological phenotype and altered auxin responses of the semidominant axr3-1 mutant of Arabidopsis result from a single amino acid change in the conserved domain II of the Aux/IAA protein IAA17. Here, we show that the biochemical effect of this gain-of-function mutation is to increase the half-life of the iaa17/axr3-1 protein by sevenfold. Intragenic mutations that suppress the iaa17/axr3-1 phenotype have been described. The iaa17/axr3-1R3 revertant contains a second site mutation in domain I and the iaa17/axr3-1R2 revertant contains a second site mutation in domain III. Transient expression assays show that the mutant forms of IAA17/AXR3 retain the ability to accumulate in the nucleus. Using the yeast two hybrid system, we show that the iaa17/axr3-1 mutation does not affect homodimerization. However, the iaa17/axr3-1 revertants counteract the increased levels of iaa17/axr3-1 protein by decreasing the capacity of the mutant protein to homodimerize. Interestingly, heterodimerization of the revertant forms of IAA17/AXR3 with IAA3/SHY2, another Aux/IAA protein, and ARF1 or ARF5/MP proteins is affected only by changes in domain III. Collectively, the results provide biochemical evidence that the revertant mutations in the IAA17/AXR3 gene affect the capacity of the encoded protein to dimerize with itself, other members of the Aux/IAA protein family, and members of the ARF protein family. By extension, these findings may provide insight into the effects of analogous mutations in other members of the Aux/IAA gene family.  相似文献   

11.
12.
We examined whether auxin/indole-3-acetic acid (Aux/IAA) proteins, which are key players in auxin-signal transduction, are involved in brassinosteroid (BR) responses. iaa7/axr2-1 and iaa17/axr3-3 mutants showed aberrant BR sensitivity and aberrant BR-induced gene expression in an organ-dependent manner. Two auxin inhibitors were tested in terms of BR responses. Yokonolide B inhibited BR responses, whereas p-chlorophenoxyisobutyric acid did not inhibit BR responses. DNA microarray analysis revealed that 108 genes were up-regulated, while only eight genes were down-regulated in iaa7. Among the genes that were up- or down-regulated in axr2, 22% were brassinolide-inducible genes, 20% were auxin-inducible genes, and the majority were sensitive neither to BR nor to auxin. An inhibitor of BR biosynthesis, brassinazole, inhibited auxin induction of the DR5-GUS gene, which consists of a synthetic auxin-response element, a minimum promoter, and a beta-glucuronidase. These results suggest that Aux/IAA proteins function in auxin- and BR-signaling pathways, and that IAA proteins function as the signaling components modulating BR sensitivity in a manner dependent on organ type.  相似文献   

13.
14.
Arabidopsis root architecture is regulated by shoot-derived signals such as nitrate and auxin. We report that mutations in the putative auxin influx carrier AUX1 modify root architecture as a result of the disruption in hormone transport between indole-3-acetic acid (IAA) source and sink tissues. Gas chromatography-selected reaction monitoring-mass spectrometry measurements revealed that the aux1 mutant exhibited altered IAA distribution in young leaf and root tissues, the major IAA source and sink organs, respectively, in the developing seedling. Expression studies using the auxin-inducible reporter IAA2::uidA revealed that AUX1 facilitates IAA loading into the leaf vascular transport system. AUX1 also facilitates IAA unloading in the primary root apex and developing lateral root primordium. Exogenous application of the synthetic auxin 1-naphthylacetic acid is able to rescue the aux1 lateral root phenotype, implying that root auxin levels are suboptimal for lateral root primordium initiation in the mutant.  相似文献   

15.
Rock CD  Sun X 《Planta》2005,222(1):98-106
Studies of abscisic acid (ABA) and auxin have revealed that these pathways impinge on each other. The Daucus carota (L.) Dc3 promoter: uidA (-glucuronidase: GUS) chimaeric reporter (ProDc3:GUS) is induced by ABA, osmoticum, and the auxin indole-3-acetic acid (IAA) in vegetative tissues of transgenic Arabidopsis thaliana (L.) Heynh. Here, we describe the root tissue-specific expression of ProDc3:GUS in the ABA-insensitive-2 (abi2-1), auxin-insensitive-1 (aux1), auxin-resistant-4 (axr4), and rooty (rty1) mutants of Arabidopsis in response to ABA, IAA and synthetic auxins naphthalene acetic acid (NAA), and 2, 4-(dichlorophenoxy) acetic acid. Quantitative analysis of ProDc3:GUS expression showed that the abi2-1 mutant had reduced GUS activity in response to ABA, IAA, or 2, 4-d, but not to NAA. Similarly, chromogenic staining of ProDc3:GUS activity showed that the aux1 and axr4 mutants gave predictable hypomorphic ProDc3:GUS expression phenotypes in roots treated with IAA or 2, 4-d, but not the diffusible auxin NAA. Likewise the rty mutant, which accumulates auxin, showed elevated ProDc3:GUS expression in the absence or presence of hormones relative to wild type. Interestingly, the aux1 and axr4 mutants showed a hypomorphic effect on ABA-inducible ProDc3:GUS expression, demonstrating that ABA and IAA signaling pathways interact in roots. Possible mechanisms of crosstalk between ABA and auxin signaling are discussed.  相似文献   

16.
17.
An Arabidopsis transgenic line was constructed expressing beta-glucuronidase (GUS) via the auxin-responsive domains (AuxRDs) A and B (BA-GUS) of the PS-IAA4/5 gene in an indoleacetic acid (IAA)-dependent fashion. GUS expression was preferentially enhanced in the root elongation zone after treatment of young seedlings with 10(-7) M IAA. Expression of the BA-GUS gene in the axr1, axr4, and aux1 mutants required 10- to 100-fold higher auxin concentration than that in the wild-type background. GUS expression was nil in the axr 2 and axr 3 mutants. The transgene was used to isolate mutants exhibiting altered auxin-responsive gene expression (age). Two mutants, age1 and age2, were isolated and characterized. age1 showed enhanced sensitivity to IAA, with strong GUS expression localized in the root elongation zone in the presence of 10(-8) M IAA. In contrast, age2 exhibited ectopic GUS expression associated with the root vascular tissue, even in the absence of exogenous IAA. Morphological and molecular analyses indicated that the age1 and age2 alleles are involved in the regulation of gene expression in response to IAA.  相似文献   

18.
19.
生长素信号转导途径与植物胁迫反应相互作用的证据(英)   总被引:6,自引:0,他引:6  
生长素影响植物多种生理过程 ,有报道显示生长素可能影响植物对逆境胁迫的反应。我们利用cDNA阵列技术鉴定拟南芥 (Arabidopsisthaliana (L .)Heynh .)的生长素应答基因 ,发现多个胁迫应答基因受生长素抑制 ,包括ArabidopsishomologofMEKkinase1(ATMEKK1) ,RelA/SpoThomolog 3(At_RSH3) ,Catalase 1(Cat1)和Ferritin 1(Fer1) ,说明生长素可调节胁迫应答基因的表达。此外 ,我们还证明吲哚乙酸 (IAA)合成途径中的腈水解酶基因nitrilase 1(NIT1)和nitrilase 2 (NIT2 )受盐胁迫诱导 ,提示在逆境条件下IAA的合成可能随之增加。我们利用生长素不敏感突变体研究生长素与逆境反应相互作用的信号转导 ,发现胁迫应答基因在野生型和生长素不敏感突变体auxinresistant2 (axr2 )中可被盐胁迫诱导 ,而在auxinresistant1_3(axr1_3)中则不被诱导 ,说明生长素与逆境胁迫反应的相互作用可能发生在泛素途径。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号