首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物菌根共生磷酸盐转运蛋白   总被引:1,自引:0,他引:1  
大多数植物能和丛枝菌根(arbuscular mycorrhiza, AM)真菌形成菌根共生体。AM能够促进植物对土壤中矿质营养的吸收,尤其是磷的吸收。磷的吸收和转运由磷酸盐转运蛋白介导。总结了植物AM磷酸盐转运蛋白及其结构特征,分析其分类及系统进化,并综述了AM磷酸盐转运蛋白介导的磷的吸收和转运过程及其基因的表达调控。植物AM磷酸盐转运蛋白属于Pht1家族成员,它不仅对磷的吸收和转运是必需的,而且对AM共生也至关重要,为进一步了解菌根形成的分子机理及信号转导途径提供了理论基础。  相似文献   

2.
3.
Mycorrhizas: Gene to Function   总被引:3,自引:3,他引:0  
Substantial progress has been made toward development of molecular tools for identification and quantification of mycorrhizal fungi in roots and evaluation of the diversity of ectomycorrhizal (ECM) fungi and the phylogeny and genetic structure of arbuscular mycorrhizal (AM) fungi. rDNA analysis confirms high diversity of ECM fungi on their hosts, and for AM fungi has revealed considerable genetic variation within and among morphologically similar AM fungal species. The fungal and plant genes, regulation of their expression, and biochemical pathways for nutrient exchange between symbiotic partners are now coming under intense study and will eventually be used to define the ecological nutritional role of the fungi. While molecular biological approaches have increased understanding of the mycorrhizal symbiosis, such knowledge about these lower-scale processes has yet to influence our understanding of larger-scale responses to any great extent.  相似文献   

4.
Ruiz-Lozano JM 《Mycorrhiza》2003,13(6):309-317
Water deficit is considered one of the most important abiotic factors limiting plant growth and yield in many areas on earth. Several eco-physiological studies have demonstrated that the arbuscular mycorrhizal (AM) symbiosis often results in altered rates of water movement into, through and out of the host plants, with consequent effects on tissue hydration and plant physiology. It is now accepted that the contribution of AM symbiosis to plant drought tolerance is the result of accumulative physical, nutritional, physiological and cellular effects. This review considers several aspects that should be investigated at a molecular level in order to gain a whole understanding of the different mechanisms by which the AM symbiosis protects the host plants against the detrimental effects of water deficit.  相似文献   

5.
Summary

Mycorrhizal associations vary widely in structure and function, but the commonest interaction is the Arbuscular Mycorrhizal (AM) symbiosis which forms between the roots of over 80% of all terrestrial plant species and Zygomycete fungi of the Order Glomales. These are obligate symbionts which colonise plant root cells. This symbiosis confers benefits directly to the host plants through the acquisition of phosphate and other mineral nutrients from the soil by the fungus while the fungus receives a carbon source from the host. In addition, the symbiosis may also enhance the plants resistance to biotic and abiotic stresses. The beneficial effects of AM symbioses occur as a result of a complex molecular dialogue between the two symbiotic partners. Identifying the molecules and genes involved in the dialogue is necessary for a greater understanding of the symbiosis. This paper reviews the process of AM fungal colonisation of plant roots and the underlying molecular mechanisms associated with the formation and functioning of an AM symbiosis.  相似文献   

6.
7.
Excessive salt accumulation in soils is a major ecological and agronomical problem, in particular in arid and semi-arid areas. Excessive soil salinity affects the establishment, development, and growth of plants, resulting in important losses in productivity. Plants have evolved biochemical and molecular mechanisms that may act in a concerted manner and constitute the integrated physiological response to soil salinity. These include the synthesis and accumulation of compatible solutes to avoid cell dehydration and maintain root water uptake, the regulation of ion homeostasis to control ion uptake by roots, compartmentation and transport into shoots, the fine regulation of water uptake and distribution to plant tissues by the action of aquaporins, the reduction of oxidative damage through improved antioxidant capacity and the maintenance of photosynthesis at values adequate for plant growth. Arbuscular mycorrhizal (AM) symbiosis can help the host plants to cope with the detrimental effects of high soil salinity. There is evidence that AM symbiosis affects and regulates several of the above mentioned mechanisms, but the molecular bases of such effects are almost completely unknown. This review summarizes current knowledge about the effects of AM symbiosis on these physiological mechanisms, emphasizing new perspectives and challenges in physiological and molecular studies on salt-stress alleviation by AM symbiosis.  相似文献   

8.
Toussaint JP 《Mycorrhiza》2007,17(4):349-353
Research in the field of arbuscular mycorrhizal (AM) symbiosis has taken a giant leap in the past two decades, as demonstrated by the large amount of literature being published every year. Most of the research efforts have been put towards the understanding of the mechanisms of this symbiosis. However, there are still several unknowns on the systemic effects of the AM symbiosis, and our understanding of non-nutritional effects on the physiological changes occurring in the aerial parts of the host plant is yet quite limited. In this short note, I briefly address the question, if there are any changes in metabolic activities that are triggered by AM fungi, and assess the importance of such changes for mycorrhizal research and application.  相似文献   

9.
Zhu H  Riely BK  Burns NJ  Ané JM 《Genetics》2006,172(4):2491-2499
Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recruited functions from the more ancient AM symbiosis. The recent advances in cloning of the genes required for nodulation and AM symbioses from the two model legumes, Medicago truncatula and Lotus japonicus, provide a unique opportunity to address biological questions pertaining to the evolution of root symbioses in plants. Here, we report that nearly all cloned legume genes required for nodulation and AM symbioses have their putative orthologs in nonlegumes. The orthologous relationship can be clearly defined on the basis of both sequence similarity and microsyntenic relationship. The results presented here serve as a prelude to the comparative analysis of orthologous gene function between legumes and nonlegumes and facilitate our understanding of how gene functions and signaling pathways have evolved to generate species- or family-specific phenotypes.  相似文献   

10.
11.
In recent years a number of legume genes involved in root nodule (RN) symbiosis have been identified in the model legumes, Lotus japonicus (Lotus) and Medicago truncatula. Among them, a distinct set of genes has been categorized as a common symbiosis pathway (CSP), because they are also essential for another mutual interaction, the arbuscular mycorrhiza (AM) symbiosis, which is evolutionarily older than the RN symbiosis and is widely distributed in the plant kingdom. Based on the concept that the legume RN symbiosis has evolved from the ancient AM symbiosis, one issue is whether the CSP is functionally conserved between non-nodulating plants, such as rice, and nodulating legumes. We identified three rice CSP gene orthologs, OsCASTOR, OsPOLLUX and OsCCaMK, and demonstrated the indispensable roles of OsPOLLUX and OsCCaMK in rice AM symbiosis. Interestingly, molecular transfection of either OsCASTOR or OsCCaMK could fully complement symbiosis defects in the corresponding Lotus mutant lines for both the AM and RN symbioses. Our results not only provide a conserved genetic basis for the AM symbiosis between rice and Lotus, but also indicate that the core of the CSP has been well conserved during the evolution of RN symbiosis. Through evolution, CASTOR and CCaMK have remained as the molecular basis for the maintenance of CSP functions in the two symbiosis systems.  相似文献   

12.
Song F Q  Song G  Dong A R  Kong X S 《农业工程》2011,31(6):322-327
Arbuscular mycorrhizal (AM) fungi colonize the roots of over 80% of terrestrial plant species, forming mutually beneficial symbioses. During the colonization process, symbiotic partners recognize each other, and undergo observable morphological and physiological changes; indicating that symbiosis formation involves multiple factors that are finely regulated. Sometimes host plants generate a transient, weak, defense response. This response and its down-regulation play a very important role in the development of AM symbioses. Although AM fungi can infect a wide range of host root tissues, which host defense may play a crucial role is hypothesized from the fact that hyphal expansion is only observed in the root cortex.
We discuss five defense mechanisms. (1) The degradation of exogenous elicitors. The host’s weak defense response may be due to the degradation of the exogenous elicitor chitin, or the prevention of release of an endogenous inductor from the plant cell wall. (2) The inactivation of defense signal molecules. Some defense signal molecules such as hydrogen peroxidase, salicylic acid (SA), and jasmonic acid (JA), are inactivated in host plants. This helps to avoid the turn-on of defense-related genes and facilitate mycorrhizal formation. (3) The regulation of plant hormones and plant photosynthates. Plant hormone levels and plant photosynthate metabolism both change during AM colonization. These mechanisms need further exploration. (4) Changes in levels of phosphorous (P), and (iso)flavonoids. High P levels can induce some defense genes to express hydrogen peroxidase, chitinase, and glucanase. These gene products can repress colonization by AM fungi. The plant defense response regulatory effect for different (iso)flavonoids varies, and their levels are regulated by P. (5) The suppressed expression of symbiotic genes. Some symbiosis-related genes inhibit plant defense responses, but it is still unclear which mechanisms underlie gene regulation. We provide here a theoretical basis for research into AM symbiosis that may promote study of host plant resistance and the mechanisms of symbiosis formation.
We provide a deeper insight into the signal transduction pathways of mycorrhization that will aid understanding and analysis of plant defense mechanisms in the AM context. The on-going development of genome sequencing technology will contribute greatly to the detailed study of symbiosis-related genes, and pathogenesis-related protein genes. These related genes may be induced to express corresponding proteins, be repressed, postpone expression or even shutdown, or both may work together to form symbioses. Elucidation of these features will help us understand the roles that plant defenses play in mycorrhizal formation; providing an unprecedented opportunity for research into mycorrhizal molecular biology and the interaction of symbiotic partners, and allowing the underlying mechanisms to be gradually uncovered.  相似文献   

13.
14.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod? are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

15.
The classical one genome-one organism conception of the individual is yielding today to a symbiotic conception of the organism. Microbial symbiosis is fundamental in our evolution, physiology and development. This notion, while not new, has been revitalized by advances in molecular methods for studying microbial diversity over the past decade. An ecological understanding of our microbial communities in health and disease supplements the venerable one germ-one disease conception of classical germ theory, and reinforces the view that nothing in biology makes sense except in light of symbiosis.  相似文献   

16.
Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na+ and/or K+. Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na+/K+ homeostasis and measure Na+ and K+ contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na+ extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na+ from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na+ root-to-shoot distribution and an increase of Na+ accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.  相似文献   

17.
18.
丛枝菌根共生建成的信号识别机制   总被引:1,自引:1,他引:0  
侯时季  陈保冬  张莘 《微生物学通报》2016,43(12):2693-2699
丛枝菌根(Arbuscular mycorrhiza,AM)共生是自然界中普遍存在的一种互惠共生现象,对促进土壤生态系统物质循环及维持生态系统稳定具有重要的意义。AM共生体的建立需要AM真菌和宿主植物间一系列复杂的信号识别、交换和传导。本文总结近年来相关文献,从AM共生体形成前期及AM共生体形成期两个阶段,分别综述了信号物质的生物合成过程、调控过程及其作用机制,希望有助于进一步认识AM共生体建成过程,同时通过分析当前研究工作的不足及未来研究动向,期望推动相关研究工作。  相似文献   

19.
20.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号