首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Auxin-induced and 1-aminocyclopropane-1-carboxylic acid (ACC)-dependentethylene production in mung bean (Vigna radiata [L] Wilczek)hypocotyl sections, from which epidermis had been removed, wasinvestigated. Ethylene production in hypocotyl sections withoutepidermis was induced by treatment with IAA, and also occurredfrom exogenously supplied ACC in the presence of 0.2 M mannitol.Isolated epidermal strips alone failed to produce substantialamounts of ethylene in response to IAA or from exogenous ACC.3,4-[14C]-Methionone was incorporated into both ACC and ethylenein peeled sections treated with IAA, but not in the isolatedepidermal strips. Radioactive ACC, however, was detected inthe epidermal strips separated from the unpeeled sections previouslyfed with 3,4-[14C]-methionine in the presence of IAA. We concludethat the Site of auxin-induced ethylene production is not inthe epidermis, but in other hypocotyl cells, and that epidermalcells lack the activity which converts ACC to ethylene. (Received January 28, 1985; Accepted May 4, 1985)  相似文献   

3.
Inhibition of Ethylene Production in Penicillium digitatum   总被引:2,自引:2,他引:0       下载免费PDF全文
Production of ethylene by static cultures of Penicillium digitatum, which utilize glutamate and α-ketoglutarate as ethylene precursors, was inhibited by methionine, methionine sulfoxide, methionine sulfone, and methionine sulfoximine. Rhizobitoxine did not affect ethylene production but its ethoxy and methoxy analogues were effective inhibitors of ethylene production; its saturated methoxy analogue and kainic acid stimulated ethylene production. Tracer studies showed that the inhibitors blocked the conversion of [3H]glutamate into [3H]ethylene.

In shake cultures of this fungus, which utilize methionine as the ethylene precursor, rhizobitoxine and its unsaturated analogues all inhibited, while the saturated methoxy analogue stimulated ethylene production. In both types of cultures inhibition was irreversible and was diminished by increasing concentrations of the ethylene precursor. The inhibitory activity or lack of it by rhizobitoxine and its analogues appears to be a function of their structural resemblance to glutamate and methionine as well as of their size and stereoconfiguration. These data suggest similarities between the ethylene-forming system in the fungus and in higher plants despite differences in precursors under some cultural conditions.

  相似文献   

4.
Yu YB  Yang SF 《Plant physiology》1979,64(6):1074-1077
Auxin is known to stimulate greatly both C2H4 production and the conversion of methionine to ethylene in vegetative tissues, while amino-ethoxyvinylglycine (AVG) or Co2+ ion effectively block these processes. To identify the step in the ethylene biosynthetic pathway at which indoleacetic acid (IAA) and AVG exert their effects, [3-14C]methionine was administered to IAA or IAA-plus-AVG-treated mung bean hypocotyls, and the conversion of methionine to S-adenosylmethionine (SAM), 1-amino-cyclopropane-1-carboxylic acid (ACC), and C2H4 was studied. The conversion of methionine to SAM was unaffected by treatment with IAA or IAA plus AVG, but active conversion of methionine to ACC was found only in tissues which were treated with IAA and which were actively producing ethylene. AVG treatment abolished both the conversion of methionine to ACC and ethylene production. These results suggest that in the ethylene biosynthetic pathway (methionine → SAM → ACC → C2H4) IAA stimulates C2H4 production by inducing the synthesis or activation of ACC synthase, which catalyzes the conversion of SAM to ACC. Indeed, ACC synthase activity was detected only in IAA-treated tissues and its activity was completely inhibited by AVG. This conclusion was supported by the observation that endogenous ACC accumulated after IAA treatment, and that this accumulation was completely eliminated by AVG treatment. The characteristics of Co2+ inhibition of IAA-dependent and ACC-dependent ethylene production were similar. The data indicate that Co2+ exerts its effect by inhibiting the conversion of ACC to ethylene. This conclusion was further supported by the observation that when Co2+ was administered to IAA-treated tissues, endogenous ACC accumulated while ethylene production declined.  相似文献   

5.
Fatty acids of chain length from C4 to C12 inhibited ethyleneproduction in wounded albedo tissue of Hassaku (Citrus hassakuHort. ex Tanaka) fruit. Of the fatty acids tested, caprylicacid (C8) and capric acid (C10) were the most effective. Lauricacid (C12) was less effective, and caproic acid (C6) and butyricacid (C4) were the least effective. Caprylic acid at 5 mM markedlyinhibited ethylene production in not only wounded albedo tissueof citrus fruit but also apple (Malus sylvestris Mill.) cortex,tomato (Lycopersicon esculentum Mill.) pericarp, cucumber (Cucumissativus L.) cortex, banana (Musa AAA group Cavendish subgroup)pulp, broccoli (Brassica oleracea L.) floret, spinach (Spinaciaoleracea L.) leaf, lettuce (Lactuca sativa L.) leaf and mungbean (Vigna radiata [L.] Wilczek) hypocotyl. Caprylic acid inhibitedethylene production at the step of conversion of l-aminocyclopropane-l-carboxylicacid to ethylene. The inhibition could be partially relievedby transferring the tissue to caprylic acid-free medium. (Received June 15, 1982; Accepted August 13, 1982)  相似文献   

6.
A linear stress strain analyzer was used to determine the effects of inhibitors of RNA and protein synthesis on auxin-induced increases in cell wall extensibility. With etiolated soybean hypocotyl, maize mesocotyl and Avena coleoptile sections and light-grown pea internode sections, inhibition of RNA synthesis resulted in inhibition of auxin-induced extensibility changes and cell expansion. The results with both actinomycin D and cycloheximide support an earlier conclusion that unstable cell constituents, presumably enzymes, are essential for cell wall loosening induced by auxin as well as for cell elongation.  相似文献   

7.
Inhibition of Polar Auxin Transport by Ethylene   总被引:20,自引:13,他引:7       下载免费PDF全文
Applied ethylene influences the growth of etiolated pea stem sections cut from untreated plants, but has no effect on (14)C-indoleacetic acid uptake, polar transport or destruction. However, the capacity of the polar auxin transport system is markedly reduced in sections cut from plants grown in ethylene, while the velocity of auxin transport is unchanged under these conditions. Inhibition of the polar transport system by ethylene could underlie certain responses in which the gas produces symptoms of auxin deficiency.  相似文献   

8.
Methionine-induced Ethylene Production by Penicillium digitatum   总被引:8,自引:5,他引:3       下载免费PDF全文
Shake cultures, in contrast to static cultures of Penicillium digitatum grown in liquid medium, were induced by methionine to produce ethylene. The induction was concentration-dependent, and 7 mM was optimum for the methionine effect. In the presence of methionine, glucose (7 mM) enhanced ethylene production but did not itself induce ethylene production. The induction process lasted several hours, required the presence of viable mycelium, exhibited a lag period for ethylene production, and was effectively inhibited by cycloheximide and actinomycin D. Thus, the methionine-induced ethylene production appeared to involve induction of an enzyme system(s). Methionine not only induced ethylene production but was also utilized as a substrate since labeled ethylene was produced from [14C]methionine.  相似文献   

9.
Ethylene Production by the Lichen Ramalina duriaei   总被引:1,自引:0,他引:1  
The lichen Ramalina duriaei evolved ethylene when in a wettedstate, the rate of ethylene evolution being constant for atleast the first 20 h. Inhibitors of the ACC (I-aminocyclopropane-I-carboxylicacid) pathway did not inhibit ethylene production. Metal ionsstimulated the production, with Fe2+ being the most effective.This stimulation was not affected by inhibitors of the ACC pathwaybut was inhibited by free radical scavengers such as propylgallateand quercitin. Endogenous ACC content was similar whether thelichens were producing ethylene at a basal rate or during Fe2+-stimulatedethylene formation. Malondialdehyde and aldehyde contents werehigher in the presence of Fe2+. The results are discussed interms of known pathways of ethylene production by micro-organisms. ACC, ethylene, metal ions, methionine, 2-oxo-methylthiobutyric acid, Ramalina duriaei (De Not.) Bagl  相似文献   

10.
11.
Abeles FB 《Plant physiology》1967,42(4):608-609
  相似文献   

12.
Gall size and rates of ethylene production by various hosts infected with Meloidogyne javanica and by excised tomato root cultures infected with M. javanica or M. hapla were measured. Infection with M. javanica increased the rate of ethylene production in dicotyledonous plants (cabbage, pea, carrot, cucumber, carnation, and tomato), but not in infected monocotyledonous plants (corn, wheat, and onion). Nematode infection induced large galls on roots of dicotyledonous, but not monocotyledonous, plants. Excised tomato roots in culture infected with M. javanica produced ethylene at high rates and formed large galls, whereas roots infected with M. hapla produced ethylene at low rates and induced smaller galls.  相似文献   

13.
Nodulated soybean roots produced more ethylene and contained more 1-aminocyclopropane-1-carboxylic acid than uninoculated roots. Nodules produced more ethylene and contained more 1-aminocyclopropane-1-carboxylic acid per gram of material than roots. Almost all of the ethylene produced by the nodules was produced by the plant fractions of the nodules. Ethylene, at physiological concentrations, did not inhibit nodulation in soybeans.  相似文献   

14.
15.
Axenic cultures of Agaricus bisporus were used to show that the rise in ethylene production during fruiting derives from its own metabolism.  相似文献   

16.
Inhibition of Aflatoxin Production by Surfactants   总被引:2,自引:3,他引:2       下载免费PDF全文
The effect of 12 surfactants on aflatoxin production, growth, and conidial germination by the fungus Aspergillus flavus is reported. Five nonionic surfactants, Triton X-100, Tergitol NP-7, Tergitol NP-10, polyoxyethylene (POE) 10 lauryl ether, and Latron AG-98, reduced aflatoxin production by 96 to 99% at 1% (wt/vol). Colony growth was restricted by the five nonionic surfactants at this concentration. Aflatoxin production was inhibited 31 to 53% by lower concentrations of Triton X-100 (0.001 to 0.0001%) at which colony growth was not affected. Triton X-301, a POE-derived anionic surfactant, had an effect on colony growth and aflatoxin production similar to that of the five POE-derived nonionic surfactants. Sodium dodecyl sulfate (SDS), an anionic surfactant, and dodecyltrimethylammonium bromide, a cationic surfactant, suppressed conidial germination at 1% (wt/vol). SDS had no effect on aflatoxin production or colony growth at 0.001%. The degree of aflatoxin inhibition by a surfactant appears to be a function of the length of the hydrophobic and hydrophilic chains of POE-derived surfactants.  相似文献   

17.
Auxin-Induced Water Uptake by Avena Coleoptile Sections   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

18.
外源乙烯在一定的条件下明显抑制了超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性,提高了超氧化物阴离子自由基和过氧化氢(H2O2)的产率,从而有效地诱导了内源乙烯产生的增加;外源和H2O2对乙烯产生的促进作用及外源活性氧清除剂对乙烯产生的抑制作用也为此提供了证明。乙烯对植物生理过程的调节机制之一就是通过影响活性氧清除酶活性,从而调节各种活性氧在体内的平衡。  相似文献   

19.
Mechanism of Auxin-induced Ethylene Production   总被引:24,自引:22,他引:2       下载免费PDF全文
Indoleacetic acid-induced ethylene production and growth in excised segments of etiolated pea shoots (Pisum sativum L. var. Alaska) parallels the free indoleacetic acid level in the tissue which in turn depends upon the rate of indoleacetic acid conjugation and decarboxylation. Both ethylene synthesis and growth require the presence of more than a threshold level of free endogenous indoleacetic acid, but in etiolated tissue the rate of ethylene production saturates at a high concentration and the rate of growth at a lower concentration of indoleacetic acid. Auxin stimulation of ethylene synthesis is not mediated by induction of peroxidase; to the contrary, the products of the auxin action which induce growth and ethylene synthesis are highly labile.  相似文献   

20.
Rapid Production of Auxin-induced Ethylene   总被引:2,自引:2,他引:0       下载免费PDF全文
The time course of auxin-induced ethylene production was determined in mesocotyl segments of etiolated sorghum (Sorghum bicolor L. Moench) seedlings. The latent period between addition of auxin and a detectable rise in ethylene release was 15 to 20 minutes in four different genotypes. This may indicate that the initial effect of auxin on ethylene production is too rapid to involve synthesis of an ethylene-producing enzyme. The technique devised for these experiments involves placing tissue segments end to end in a glass tube, and it allows simultaneous determination of growth and ethylene production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号