首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Nox 2 stimulates muscle differentiation via NF-kappaB/iNOS pathway   总被引:1,自引:0,他引:1  
The NF-kappaB/iNOS pathway stimulates muscle differentiation downstream of the PI 3-kinase/p38 MAPK pathway and diverse antioxidants block muscle differentiation. Therefore, we here investigated whether Nox 2 links those two myogenic pathways in H9c2 and C2C12 myoblasts. Compared with the proliferation stage, ROS generation was enhanced from the early stage of differentiation and gradually increased as differentiation progressed. Antioxidants suppressed the activated NF-kappaB/iNOS pathway during muscle differentiation. Nox 2 activity was also increased during muscle differentiation. Treatment with DPI and apocynin, two inhibitors of NADPH oxidase, and suppression of Nox 2 expression using siRNA, but not Nox 1, inhibited NADPH oxidase activity, muscle differentiation, and the NF-kappaB/iNOS pathway. Inhibition of PI 3-kinase and p38 MAPK suppressed the Nox 2/NF-kappaB/iNOS pathway. Nitric oxide restored muscle differentiation blocked by treatment with antioxidants or suppression of the Nox 2/NF-kappaB/iNOS pathway. In conclusion, Nox 2 stimulates muscle differentiation downstream of the PI 3-kinase/p38 MAPK pathway by activating the NF-kappaB/iNOS pathway via ROS generation.  相似文献   

2.
Non-amyloid beta (Abeta) component of Alzheimer's disease (AD) amyloid (NAC) coexists with Abeta protein in senile plaques. After exposure to NAC fibrils, cortical neurons of rat brain primary culture became apoptotic, while astrocytes were activated with extension of their processes. NAC fibrils decreased the activity of reducing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) in cortical neurons more markedly (IC(50) = 5.6 microm) than in astrocytes (IC(50) approximately 50 microm). The neuron-specific toxicity of NAC fibrils was indicated also by an increased release of lactate dehydrogenase from the cells. Neuronal apoptosis was suppressed by pre-treatment with the antioxidants, propyl gallate (PG) and N-t-butyl-phenylnitrone (BPN), or overexpression of human Bcl-2. Exposure to NAC fibrils enhanced generation of reactive oxygen species (ROS) in neurons and less efficiently in astrocytes, as demonstrated by oxidation of 2',7'-dichlorofluorescin. The site of ROS generation was shown to be mitochondria by oxidation of chloromethyl-tetramethyl rosamine. Exposure to NAC fibrils increased also the nuclear translocation of nuclear factor kappa B (NF-kappaB) and enhanced its DNA-binding activity, which was inhibited by PG and BPN more efficiently in neurons than in astrocytes. These results suggest that NAC fibrils increase mitochondrial ROS generation and activate NF-kappaB, thereby causing a differential change in gene expression between neurons and astrocytes in the AD brain.  相似文献   

3.
Activated glia (astrocytes and microglia) and their associated neuroinflammatory sequelae have been linked to the disease progression of several neurodegenerative disorders, including Alzheimer's disease. We found that the experimental anti-inflammatory drug K252a, an inhibitor of calmodulin regulated protein kinases (CaMKs), can block induction of both the oxidative stress related enzyme iNOS and the proinflammatory cytokine IL-1β in primary cortical glial cultures and the microglial BV-2 cell line. We also found that the profile of CaMKIV and CaMKII isoforms in primary cortical glial cultures and BV-2 cells is distinct from that found in neurons. Knowledge of cellular mechanisms and high throughput screens of a pharmacologically focused chemical library allowed the discovery of novel pyridazine-based compounds that are cell permeable ligand modulators of gene regulating protein kinases involved in the induction of iNOS and IL-1β in activated glia. Pyridazine-based compounds are attractive for the development of new therapeutics due to the retention of the remarkable pharmacological properties of K252a and related indolocarbazole alkaloids, and presence of enhanced functional selectivity in a comparatively simple structure amenable to diverse synthetic chemistries.  相似文献   

4.
Inducible nitric oxide synthase (iNOS) is one of three NOS isoforms generating nitric oxide (NO) by the conversion of l-arginine to l-citrulline. iNOS has been found to be a major contributor to initiation/exacerbation of the central nervous system (CNS) inflammatory/degenerative conditions through the production of excessive NO which generates reactive nitrogen species (RNSs). Activation of iNOS and NO generation has come to be accepted as a marker and therapeutic target in neuroinflammatory conditions such as those observed in ischemia, multiple sclerosis (MS), spinal cord injury (SCI), Alzheimer's disease (AD), and inherited peroxisomal (e.g. X-linked adrenoleukodystrophy; X-ALD) and lysosomal disorders (e.g. Krabbe's disease). However, with the emergence of reports on the neuroprotective facets of NO, the prior dogma about NO being solely detrimental has had to be modified. While RNSs such as peroxynitrite (ONOO(-)) have been linked to lipid peroxidation, neuronal/oligodendrocyte loss, and demyelination in neurodegenerative diseases, limited NO generation by GSNO has been found to promote vasodilation and attenuate vascular injury under the same ischemic conditions. NO generated from GSNO acts as second messenger molecular which through S-nitrosylation has been shown to control important cellular processes by regulation of expression/activity of certain proteins such as NF-kappaB. It is now believed that the environment and the context in which NO is produced largely determines the actions (good or bad) of this molecule. These multi-faceted aspects of NO make therapeutic interference with iNOS activity even more complicated since complete ablation of iNOS activity has been found to be rather more detrimental than protective in most neurodegenerative conditions. Investigators in search of iNOS modulating pharmacological agents have realized the need of a delicate balance so as to allow the production of physiologically relevant amounts of NO (such as those required for host defence/neutotransmission/vasodilation, etc.) but at the same time block the generation of RNSs through repressing excessive NO levels (such as those causing neuronal/tissue damage and demyelination, etc.). The past years have seen a noteworthy increase in novel agents that might prove useful in achieving the aim of harnessing the good and blocking the undesirable actions of NO. It is the aim of this review to provide basic insights into the NOS family of enzymes with special emphasis of the role of iNOS in the CNS, in the first part. In the second part of the review, we will strive to provide an exhaustive compilation of the prevalent strategies being tested for the therapeutic modulation of iNOS and NO production.  相似文献   

5.
Vasotoxic effect of prolonged lead exposures and the efficiency of vasoprotective effect of S. coronata extract per os addition is estimated in rats aorta It is established that lead in aorta causes a significant increase in reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by increasing the activity of inducible isoform of NO-synthase (iNOS). The use of S. coronata extracts promotes ROS and RNS production decreasing by normalyzing the iNOS activity in exposures to lead acetate rat aortas.  相似文献   

6.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated throughout the human body. Enzymatic and nonenzymatic antioxidants detoxify ROS and RNS and minimize damage to biomolecules. An imbalance between the production of ROS and RNS and antioxidant capacity leads to a state of "oxidative stress" that contributes to the pathogenesis of a number of human diseases by damaging lipids, protein, and DNA. In general, lung diseases are related to inflammatory processes that generate increased ROS and RNS. The susceptibility of the lung to oxidative injury depends largely on its ability to upregulate protective ROS and RNS scavenging systems. Unfortunately, the primary intracellular antioxidants are expressed at low levels in the human lung and are not acutely induced when exposed to oxidative stresses such as cigarette smoke and hyperoxia. However, the response of extracellular antioxidant enzymes, the critical primary defense against exogenous oxidative stress, increases rapidly and in proportion to oxidative stress. In this paper, we review how antioxidants in the lung respond to oxidative stress in several lung diseases and focus on the mechanisms that upregulate extracellular glutathione peroxidase.  相似文献   

7.
Floyd RA  Hensley K  Jaffery F  Maidt L  Robinson K  Pye Q  Stewart C 《Life sciences》1999,65(18-19):1893-1899
Nitrone-based free radical traps (NFTs) have been shown to be protective in several neurodegenerative models. Our research has strongly implicated that: A) several neurodegenerative conditions exhibit increased levels of pro-inflammatory cytokines which consequently result in increased levels of oxidative stress and B) that NFTs act in part by suppressing oxidative stress through suppression of the action of the cytokine cascade. Acquired Immune Deficiency Syndrome (AIDS) dementia complex (ADC) is one of several conditions where the data collected helped to develop these concepts. Novel observations include demonstration that IL-1beta acts on cultured brain glia cells to invoke protein nitration and oxidative stress and that low levels of PBN (alpha-phenyl tert-butyl nitrone) inhibit this effect. We interpret these data as indicating that PBN prevents IL-1beta mediated peroxynitrite formation. Additionally, we have found that the AIDS viral envelope protein gp120 upregulates mRNA for the cytokines TNF alpha and TNF beta in rat neonatal brain, and that PBN prevents this. Western blots of protein extracts showed upregulation of inducible nitric oxide synthase (iNOS) in gp120 treated neonatal rat brains, and that PBN prevented induction of this enzyme as well. These observations underscore the general concept that PBN inhibits the induction of genes which produce neurotoxic products, one of which is peroxynitrite formed by the reaction of nitric oxide with superoxide, and may act also by inhibiting the induction of cytokines which mediate pro-inflammatory conditions in the brain.  相似文献   

8.
9.
10.
Alzheimer's disease (AD) is an age‐associated neurodegenerative disease, which is developed by oxidative stress and acetylcholine contraction in the synaptic cleft of the neurons. This leads to dementia, memory loss, and decrease in learning ability and orientation. In this research work, we aimed to explore the neuroprotective effect of neferine on AlCl3‐induced AD in rats. The results of our study revealed that the increased reactive oxygen species (ROS) and nitric oxide in the hippocampus leads to the development of AD in the rats. The oral treatment of neferine done the following occurrences such as; it potentially inhibited the ROS formation and acts as a scavenging molecule by preventing the neurodegeneration. It also improved the memory and learning ability to complete the maze activity in the AD rats and significantly increased the antioxidants superoxide dismutase, catalase, and reduced glutathione in neferine treated AD rats. It aggressively declined the activity of acetylcholine esterase and Na+K+ATPase in the neurodegenerative rat models. The gene expression pattern of neuroinflammatory cytokines such as tumor necrosis factor α (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) were decreased in the neferine‐treated rats. The neuroinflammatory proteins such as inducible nitric oxide (iNOS), cyclooxygenase‐2 (COX‐2), and nuclear factor kappa β (Nf‐κβ) were decreased and Nf‐κβ inhibitor IKBα was increased in the neferine‐treated AD rats. Finally, the histology study proved that the neferine treatment possibly prevents neurodegeneration in the hippocampus tissue of the AD models. Hence, these all findings concluded that the neferine could be a potential neuropreventive as well as neurodegenerative therapeutic compound in neurological and cognitive dysfunction.  相似文献   

11.
12.
Reactive oxygen (ROS) and nitrogen (RNS) species are known to be involved in many degenerative diseases. This study reports four new nitrogen compounds from organic synthesis, identified as FMA4, FMA7, FMA762 and FMA796, which differ mainly by the number of hydroxyl groups within their phenolic unit. Their potential role as antioxidants was evaluated in PC12 cells by assessing their protection against oxidative and nitrosative insults. The four compounds, and particularly FMA762 and FMA796, were able to protect cells against lipid peroxidation and intracellular ROS/RNS formation to a great extent. Their protective effects were likely mediated by their free radicals scavenging ability, as they appeared to be involved neither in the induction of natural antioxidant enzymes like GSH-PX and SOD, nor in the inhibition of NOS. Nevertheless, these results suggest a promising potential for these compounds as ROS/RNS scavengers in pathologies where oxidative/nitrosative stress are involved.  相似文献   

13.
The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.  相似文献   

14.
15.
16.
17.
There is mounting evidence implicating the accumulation of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease. Recently, considerable attention has been focused on identifying naturally occurring antioxidants that are able to reduce excess ROS and RNS, thereby protecting against oxidative stress and neuron death. The present study investigated the possible protective effects of piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), which is present in grapes and other foods, on hydrogen-peroxide- and peroxynitrite-induced oxidative cell death. PC12 rat pheochromocytoma (PC12) cells treated with hydrogen peroxide or SIN-1 (a peroxynitrite-generating compound) exhibited apoptotic death, as determined by nucleus condensation and cleavage of poly(ADP-ribose)polymerase (PARP). Piceatannol treatment attenuated hydrogen-peroxide- and peroxynitrite-induced cytotoxicity, apoptotic features, PARP cleavage and intracellular ROS and RNS accumulation. Treatment of PC12 cells with hydrogen peroxide or SIN-1 led to down-regulation of Bcl-X(L) and activation of caspase-3 and -8, which were also inhibited by piceatannol treatment. Hydrogen peroxide or SIN-1 treatment induced phosphorylation of the c-Jun-N-terminal kinase (JNK), which was inhibited by piceatannol treatment. Moreover, SP600125 (a JNK inhibitor) significantly inhibited hydrogen-peroxide- and peroxynitrite-induced PC12 cell death, revealing inactivation of the JNK pathway as a possible molecular mechanism for the protective effects of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells. Collectively, these findings suggest that the protective effect of piceatannol against hydrogen-peroxide- and peroxynitrite-induced apoptosis of PC12 cells is associated with blocking the activation of JNK and the down-regulation of Bcl-XL.  相似文献   

18.
The effect of reactive oxygen/nitrogen species (ROS/RNS)(hydrogen peroxide -- H(2)O(2), superoxide anion radical O(2)*- and hydroxyl radical *OH -- the reaction products of hypoxanthine/xanthine oxidase system), nitric oxide (NO* from sodium nitroprusside -- SNP), and peroxynitrite (ONOO(-) from 3-morpholinosydnonimine -- SIN-1) on insulin mitogenic effect was studied in L6 muscle cells after one day pretreatment with/or without antioxidants. ROS/RNS inhibited insulin-induced mitogenicity (DNA synthesis). Insulin (0.1 microM), however, markedly improved mitogenicity in the muscle cells treated with increased concentrations (0.1, 0.5, 1 mM) of donors of H(2)O(2), O(2)*-, *OH, ONOO(-) and NO*. Cell viability assessed by morphological criteria was also monitored. Massive apoptosis was induced by 1 mM of donors of H(2)O(2) and ONOO(-), while NO* additionally induced necrotic cell death. Taken together, these results have shown that ROS/RNS provide a good explanation for the developing resistance to the growth promoting activity of insulin in myoblasts under conditions of oxidative or nitrosative stress. Cell viability showed that neither donor induced cell death when given below 0.5 mM. In order to confirm the deleterious effects of ROS/RNS prior to the subsequent treatment with ROS/RNS plus insulin one day pretreatment with selected antioxidants (sodium ascorbate - ASC (0.01, 0.1, 1 mM), or N-acetylcysteine - NAC (0.1, 1, 10 mM) was carried out. Surprisingly, at a low dose (micromolar) antioxidants did not abrogate and even worsened the concentration-dependent effects of ROS/RNS. In contrast, pretreatment with millimolar dose of ASC or NAC maintained an elevated mitogenicity in response to insulin irrespective of the ROS/RNS donor type used.  相似文献   

19.
一氧化氮(NO)对炎症性疾病的治疗作用近来引起了广泛的重视。诱导型一氧化合成酶(iNOS)被发现广泛地参与趋炎因子表达和反应性氧化产物(ROS)/反应性氮化产物(RNS)的产生,从而进一步证明了一氧化氮在炎症病理发生发展中的关键作用。由于传统的抗炎药物环氧合酶-2(COX-2)抑制剂被报导有较多副作用,新型抑制炎症药物的研究开发势在必行。本文分别介绍了化学来源、生物来源、植物来原性iNOS抑制剂阻的开发、研究现状,阐述了其在断炎症信息传递通道中的作用。表明了iNOS抑制剂防止炎症损害的相关机理,提出iNOs不仅能在初始阶段影响炎症的发生,也对抑制和终结炎症有作用。最后进一步介绍了用中草药研发iNOs抑制剂的可能性,展望了于中药在该领域内的巨大前景。  相似文献   

20.
Pulmonary ischemia-reperfusion (IR) injury may result from trauma, atherosclerosis, pulmonary embolism, pulmonary thrombosis and surgical procedures such as cardiopulmonary bypass and lung transplantation. IR injury induces oxidative stress characterized by formation of reactive oxygen (ROS) and reactive nitrogen species (RNS). Nitric oxide (NO) overproduction via inducible nitric oxide synthase (iNOS) is an important component in the pathogenesis of IR. Reaction of NO with ROS forms RNS as secondary reactive products, which cause platelet activation and upregulation of adhesion molecules. This mechanism of injury is particularly important during pulmonary IR with increased iNOS activity in the presence of oxidative stress. Platelet-endothelial interactions may play an important role in causing pulmonary arteriolar vasoconstriction and post-ischemic alveolar hypoperfusion. This review discusses the relationship between ROS, RNS, P-selectin, and platelet-arteriolar wall interactions and proposes a hypothesis for their role in microvascular responses during pulmonary IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号