首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pleiotropic effects of the insulin-sensitizing adipokine adiponectin are mediated, at least in part, by two seven-transmembrane domain receptors AdipoR1 and AdipoR2. Recent reports indicate a role for AdipoR-binding proteins, namely APPL1, RACK1 and CK2β, in proximal signal transduction events. Here we demonstrate that endoplasmic reticulum protein 46 (ERp46) interacts specifically with AdipoR1 and provide evidence that ERp46 modulates adiponectin signalling. Co-immunoprecipitation followed by mass spectrometry identified ERp46 as an AdipoR1-, but not AdipoR2-, interacting protein. Analysis of truncated constructs and GST-fusion proteins revealed the interaction was mediated by the cytoplasmic, N-terminal residues (1-70) of AdipoR1. Indirect immunofluorescence microscopy and subcellular fractionation studies demonstrated that ERp46 was present in the ER and the plasma membrane (PM). Transient knockdown of ERp46 increased the levels of AdipoR1, and AdipoR2, at the PM and this correlated with increased adiponectin-stimulated phosphorylation of AMPK. In contrast, adiponectin-stimulated phosphorylation of p38MAPK was reduced following ERp46 knockdown. Collectively these results establish ERp46 as the first AdipoR1-specific interacting protein and suggest a role for ERp46 in adiponectin receptor biology and adiponectin signalling.  相似文献   

2.
Adiponectin, an adipokine secreted by the white adipose tissue, plays an important role in regulating glucose and lipid metabolism and controlling energy homeostasis in insulin-sensitive tissues. A decrease in the circulating level of adiponectin has been linked to insulin resistance, type 2 diabetes, atherosclerosis, and metabolic syndrome. Adiponectin exerts its effects through two membrane receptors, AdipoR1 and AdipoR2. APPL1 is the first identified protein that interacts directly with adiponectin receptors. APPL1 is an adaptor protein with multiple functional domains, the Bin1/amphiphysin/rvs167, pleckstrin homology, and phosphotyrosine binding domains. The PTB domain of APPL1 interacts directly with the intracellular region of adiponectin receptors. Through this interaction, APPL1 mediates adiponectin signaling and its effects on metabolism. APPL1 also functions in insulin-signaling pathway and is an important mediator of adiponectin-dependent insulin sensitization in skeletal muscle. Adiponectin signaling through APPL1 is necessary to exert its anti-inflammatory and cytoprotective effects on endothelial cells. APPL1 also acts as a mediator of other signaling pathways by interacting directly with membrane receptors or signaling proteins, thereby playing critical roles in cell proliferation, apoptosis, cell survival, endosomal trafficking, and chromatin remodeling. This review focuses mainly on our current understanding of adiponectin signaling in various tissues, the role of APPL1 in mediating adiponectin signaling, and also its role in the cross-talk between adiponectin/insulin-signaling pathways.  相似文献   

3.
During nervous system development different cell-to-cell communication mechanisms operate in parallel guiding migrating neurons and growing axons to generate complex arrays of neural circuits. How such a system works in coordination is not well understood. Cross-regulatory interactions between different signalling pathways and redundancy between them can increase precision and fidelity of guidance systems. Immunoglobulin superfamily proteins of the NCAM and L1 families couple specific substrate recognition and cell adhesion with the activation of receptor tyrosine kinases. Thus it has been shown that L1CAM-mediated cell adhesion promotes the activation of the EGFR (erbB1) from Drosophila to humans. Here we explore the specificity of the molecular interaction between L1CAM and the erbB receptor family. We show that L1CAM binds physically erbB receptors in both heterologous systems and the mammalian developing brain. Different Ig-like domains located in the extracellular part of L1CAM can support this interaction. Interestingly, binding of L1CAM to erbB enhances its response to neuregulins. During development this may synergize with the activation of erbB receptors through L1CAM homophilic interactions, conferring diffusible neuregulins specificity for cells or axons that interact with the substrate through L1CAM.  相似文献   

4.
Human adiponectin binds to bacterial lipopolysaccharide   总被引:5,自引:0,他引:5  
Adiponectin has anti-inflammatory and anti-atherogenic properties in addition to its acknowledged roles in insulin sensitivity and energy homeostasis. These properties include the suppression of lipopolysaccharide [LPS]-mediated inflammatory events. We demonstrated that both recombinant and native adiponectin directly bind LPS derived from three different bacteria. The interaction occurred at pH 5.0-6.0 and was inhibited by the presence of Ca(2+) and Mg(2+), but enhanced by the sequestration of these cations. Maximal binding occurred at pH 6.0 in the presence of ethylenediaminetetraacetic acid. Lipid A and C1q were not inhibitory, although LPS, heparin, zymosan, and individual sugars all inhibited the reaction. Periodate-mediated deglycosylation of adiponectin, and reduction and alkylation also inhibited binding. Since adiponectin infiltrates into [relatively] acidic sites of inflammation, it may act as a scavenging anti-inflammatory agent in atherosclerosis and vascular damage where LPS [and other pro-inflammatory molecules] are present.  相似文献   

5.
Hrs mediates downregulation of multiple signalling receptors in Drosophila   总被引:3,自引:0,他引:3  
Jékely G  Rørth P 《EMBO reports》2003,4(12):1163-1168
Endocytosis and subsequent lysosomal degradation of activated signalling receptors can attenuate signalling. Endocytosis may also promote signalling by targeting receptors to specific compartments. A key step regulating the degradation of receptors is their ubiquitination. Hrs/Vps27p, an endosome-associated, ubiquitin-binding protein, affects sorting and degradation of receptors. Drosophila embryos mutant for hrs show elevated receptor tyrosine kinase (RTK) signalling. Hrs has also been proposed to act as a positive mediator of TGF-β signalling. We find that Drosophila epithelial cells devoid of Hrs accumulate multiple signalling receptors in an endosomal compartment with high levels of ubiquitinated proteins: not only RTKs (EGFR and PVR) but also Notch and receptors for Hedgehog and Dpp (TGF-β related). Hrs is not required for Dpp signalling. Instead, loss of Hrs increases Dpp signalling and the level of the type-I receptor Thickveins (Tkv). Finally, most hrs-dependent receptor turnover appears to be ligand independent. Thus, both active and inactive signalling receptors are targeted for degradation in vivo and Hrs is required for their removal.  相似文献   

6.
We have identified Socs1 as a downstream component of the Kit receptor tyrosine kinase signalling pathway. We show that the expression of Socs1 mRNA is rapidly increased in primary bone marrow-derived mast cells following exposure to Steel factor, and Socs1 inducibly binds to the Kit receptor tyrosine kinase via its Src homology 2 (SH2) domain. Previous studies have shown that Socs1 suppresses cytokine-mediated differentiation in M1 cells inhibiting Janus family kinases. In contrast, constitutive expression of Socs1 suppresses the mitogenic potential of Kit while maintaining Steel factor-dependent cell survival signals. Unlike Janus kinases, Socs1 does not inhibit the catalytic activity of the Kit tyrosine kinase. In order to define the mechanism by which Socs1-mediated suppression of Kit-dependent mitogenesis occurs, we demonstrate that Socs1 binds to the signalling proteins Grb-2 and the Rho-family guanine nucleotide exchange factors Vav. We show that Grb2 binds Socs1 via its SH3 domains to putative diproline determinants located in the N-terminus of Socs1, and Socs1 binds to the N-terminal regulatory region of Vav. These data suggest that Socs1 is an inducible switch which modulates proliferative signals in favour of cell survival signals and functions as an adaptor protein in receptor tyrosine kinase signalling pathways.  相似文献   

7.
We recently found that the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL)1 is essential for mediating adiponectin signal to induce liver kinase B (LKB)1 cytosloic translocation, an essential step for activation of AMP-activated protein kinase (AMPK) in cells. However, the underlying molecular mechanisms remain unknown. Here, we demonstrate that treating C2C12 myotubes with adiponectin promoted APPL1 interaction with protein phosphatase 2A (PP2A) and protein kinase Cζ (PKCζ), leading to the activation of PP2A and subsequent dephosphorylation and inactivation of PKCζ. The adiponectin-induced inactivation of PKCζ results in dephosphorylation of LKB1 at Ser(307) and its subsequent translocation to the cytosol, where it stimulates AMPK activity. Interestingly, we found that metformin also induces LKB1 cytosolic translocation, but the stimulation is independent of APPL1 and the PP2A-PKCζ pathway. Together, our study uncovers a new mechanism underlying adiponectin-stimulated AMPK activation in muscle cells and shed light on potential targets for prevention and treatment of insulin resistance and its associated diseases.  相似文献   

8.
Sensitization of the pain-transducing ion channel TRPV1 underlies thermal hyperalgesia by proalgesic agents such as nerve growth factor (NGF). The currently accepted model is that the NGF-mediated increase in TRPV1 function during hyperalgesia utilizes activation of phospholipase C (PLC) to cleave PIP2, proposed to tonically inhibit TRPV1. In this study, we tested the PLC model and found two lines of evidence that directly challenge its validity: (1) polylysine, a cationic phosphoinositide sequestering agent, inhibited TRPV1 instead of potentiating it, and (2) direct application of PIP2 to inside-out excised patches dramatically potentiated TRPV1. Furthermore, we show four types of experiments indicating that PI3K is physically and functionally coupled to TRPV1: (1) the p85beta subunit of PI3K interacted with the N-terminal region of TRPV1 in yeast 2-hybrid experiments, (2) PI3K-p85beta coimmunoprecipitated with TRPV1 from both HEK293 cells and dorsal root ganglia (DRG) neurons, (3) TRPV1 interacted with recombinant PI3K-p85 in vitro, and (4) wortmannin, a specific inhibitor of PI3K, completely abolished NGF-mediated sensitization in acutely dissociated DRG neurons. Finally, simultaneous electrophysiological and total internal reflection fluorescence (TIRF) microscopy recordings demonstrate that NGF increased the number of channels in the plasma membrane. We propose a new model for NGF-mediated hyperalgesia in which physical coupling of TRPV1 and PI3K in a signal transduction complex facilitates trafficking of TRPV1 to the plasma membrane.  相似文献   

9.
Endocytic sorting of signalling receptors between recycling and degradative pathways is a key cellular process controlling the surface complement of receptors and, accordingly, the cell's ability to respond to specific extracellular stimuli. The β2 adrenergic receptor (β2AR) is a prototypical seven-transmembrane signalling receptor that recycles rapidly and efficiently to the plasma membrane after ligand-induced endocytosis. β2AR recycling is dependent on the receptor's carboxy-terminal PDZ ligand and Rab4. This active sorting process is required for functional resensitization of β2AR-mediated signalling. Here we show that sequence-directed sorting occurs at the level of entry into retromer tubules and that retromer tubules are associated with Rab4. Furthermore, we show that sorting nexin 27 (SNX27) serves as an essential adaptor protein linking β2ARs to the retromer tubule. SNX27 does not seem to directly interact with the retromer core complex, but does interact with the retromer-associated Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex. The present results identify a role for retromer in endocytic trafficking of signalling receptors, in regulating a receptor-linked signalling pathway, and in mediating direct endosome-to-plasma membrane traffic.  相似文献   

10.
Previous studies have indicated that in HepG2 cells HDL3-signalling involves glycosylphosphatidylinositol (GPI) anchored proteins. HDL3-binding to HepG2 cells was found to be enhanced by cellular preincubation with PI-PLC inhibitors and sensitive to a cellular preincubation with exogenous PI-PLC, suggesting that HDL3 binds directly on GPI-anchored proteins to initiate signaling. Moreover HDL3-binding was found to be partly inhibited by antibodies against the HDL-binding protein (AbHBP).HDL3, when binding to HepG2 cells, promoted the release in the culture medium of a 110 kDa protein that binds AbHBP, while a cellular preincubation with antibodies against the inositol-phosphoglycan (IPG) moiety of GPI-anchor (AbIPG), used to block lipolytic cleavage of the GPI-anchor, inhibits HDL3-induced release of the 110 kDa protein in the culture medium.In [3H]-PC prelabeled HepG2 cells, AbHBP were found to stimulate PC-hydrolysis and DAG generation within 5 min as did HDL3 stimulation. Cellular preincubation with AbIPG was found to inhibit only the HDL3-signal and not the AbHBP-signal, while a prior cellular pretreatment with PI-PLC from Bacillus cereus was found to inhibit the HDL3-and AbHBP-signal. Moreover cellular preincubation with AbHBP for 1 h at 37°C was found to inhibit HDL3-signalling pathways.Our results suggest that in HepG2 cells a 110 kDa protein, which could be HBP, can be anchored to the membrane via GPI, and can function in HDL3-signalling pathways as binding sites.  相似文献   

11.
Adiponectin/Acrp30 is a hormone secreted by adipocytes, which acts as an antidiabetic and antiatherogenic adipokine. We reported previously that AdipoR1 and -R2 serve as receptors for adiponectin and mediate increased fatty acid oxidation and glucose uptake by adiponectin. In the present study, we examined the expression levels and roles of AdipoR1/R2 in several physiological and pathophysiological states such as fasting/refeeding, obesity, and insulin resistance. Here we show that the expression of AdipoR1/R2 in insulin target organs, such as skeletal muscle and liver, is significantly increased in fasted mice and decreased in refed mice. Insulin deficiency induced by streptozotocin increased and insulin replenishment reduced the expression of AdipoR1/R2 in vivo. Thus, the expression of AdipoR1/R2 appears to be inversely correlated with plasma insulin levels in vivo. Interestingly, the incubation of hepatocytes or myocytes with insulin reduced the expression of AdipoR1/R2 via the phosphoinositide 3-kinase/Foxo1-dependent pathway in vitro. Moreover, the expressions of AdipoR1/R2 in ob/ob mice were significantly decreased in skeletal muscle and adipose tissue, which was correlated with decreased adiponectin binding to membrane fractions of skeletal muscle and decreased AMP kinase activation by adiponectin. This adiponectin resistance in turn may play a role in worsening insulin resistance in ob/ob mice. In conclusion, the expression of AdipoR1/R2 appears to be inversely regulated by insulin in physiological and pathophysiological states such as fasting/refeeding, insulin deficiency, and hyper-insulinemia models via the insulin/phosphoinositide 3-kinase/Foxo1 pathway and is correlated with adiponectin sensitivity.  相似文献   

12.
Frizzled receptors are components of the Wnt signalling pathway, but how they activate the canonical Wnt/beta-catenin pathway is not clear. Here we use three distinct vertebrate frizzled receptors (Xfz3, Xfz4 and Xfz7) and describe whether and how their C-terminal cytoplasmic regions transduce the Wnt/beta-catenin signal. We show that Xfz3 activates this pathway in the absence of exogenous ligands, while Xfz4 and Xfz7 interact with Xwnt5A to activate this pathway. Analysis using chimeric receptors reveals that their C-terminal cytoplasmic regions are functionally equivalent in Wnt/beta-catenin signalling. Furthermore, a conserved motif (Lys-Thr-X-X-X-Trp) located two amino acids after the seventh transmembrane domain is required for activation of the Wnt/beta-catenin pathway and for membrane relocalization and phosphorylation of Dishevelled. Frizzled receptors with point mutations affecting either of the three conserved residues are defective in Wnt/beta-catenin signalling. These findings provide functional evidence supporting a role of this conserved motif in the modulation of Wnt signalling. They are consistent with the genetic features exhibited by Drosophila Dfz3 and Caenorhabditis elegans mom-5 in which the tryptophan is substituted by a tyrosine.  相似文献   

13.
Dengue virus, a member of the family Flaviviridae, poses a serious public health threat worldwide. Dengue virus is a positive-sense RNA virus that harbors a genome of approximately 10.7 kb. Replication of dengue virus is mediated coordinately by cis-acting genomic sequences, viral proteins, and host cell factors. We have isolated and identified several host cell factors from baby hamster kidney cell extracts that bind with high specificity and high affinity to sequences within the untranslated regions of the dengue virus genome. Among the factors identified, Y box-binding protein-1 (YB-1) and the heterogeneous nuclear ribonucleoproteins (hnRNPs), hnRNP A1, hnRNP A2/B1, and hnRNP Q, bind to the dengue virus 3'-untranslated region. Further analysis indicated that YB-1 binds to the dengue virus 3' stem loop, a conserved structural feature located at the 3' terminus of the 3'-untranslated region of many flaviviruses. Analysis of the impact of YB-1 on replication of dengue virus in YB-1+/+ and YB-1-/- mouse embryo fibroblasts indicated that host YB-1 mediates an antiviral effect. Further studies demonstrated that this antiviral impact is due, at least in part, to a repressive role of YB-1 on dengue virus translation via a mechanism that requires viral genomic sequences. These results suggest a novel role for YB-1 as an antiviral host cell factor.  相似文献   

14.
The adaptor protein APPL1 mediates the stimulatory effect of adiponectin on p38 mitogen-activated protein kinase (MAPK) signaling, yet the underlying mechanism remains unclear. Here we show that, in C(2)C(12) cells, overexpression or suppression of APPL1 enhanced or suppressed, respectively, adiponectin-stimulated p38 MAPK upstream kinase cascade, consisting of transforming growth factor-β-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase 3 (MKK3). In vitro affinity binding and coimmunoprecipitation experiments revealed that TAK1 and MKK3 bind to different regions of APPL1, suggesting that APPL1 functions as a scaffolding protein to facilitate adiponectin-stimulated p38 MAPK activation. Interestingly, suppressing APPL1 had no effect on TNFα-stimulated p38 MAPK phosphorylation in C(2)C(12) myotubes, indicating that the stimulatory effect of APPL1 on p38 MAPK activation is selective. Taken together, our study demonstrated that the TAK1-MKK3 cascade mediates adiponectin signaling and uncovers a scaffolding role of APPL1 in regulating the TAK1-MKK3-p38 MAPK pathway, specifically in response to adiponectin stimulation.  相似文献   

15.
16.

Purpose of work  

Our study provides a promising alternative of biomimetic coating which functionalizes the dental implant with adhesion peptides and may be useful for enhancing the bone remodeling around Ti implants.  相似文献   

17.
《Molecular cell》2021,81(24):4994-5006.e5
  1. Download : Download high-res image (211KB)
  2. Download : Download full-size image
  相似文献   

18.
Sphingosine 1-phosphate (S1P) is a polar lysophospholipid metabolite that is stored in platelets and released upon their activation. However, diverse stimuli such as growth factors, cytokines, G-protein coupled receptor (GPCR) agonists and antigens have been shown to increase sphingosine kinase activity and S1P formation in other cell types, such as smooth muscle. Indeed, S1P has been implicated in the regulation of several important cellular processes, such as proliferation, differentiation, apoptosis and migration in these cells. Over the past few years, there has been a major advance in our understanding of how S1P can act as an intercellular mediator by binding to a new class of G-protein coupled receptors to regulate cell function. This review focuses on the enzymatic regulation of S1P formation and degradation and its interaction with a novel tethered receptor complex containing the S1P receptor (S1P(1)) and the platelet-derived growth factor (PDGF) beta receptor. This tethered receptor complex enables coincident integrative signalling to p42/p44 MAPK. This is compared with a sequential model in which PDGF promotes S1P release, which in turn acts on S1P(1) to promote Rac signalling.  相似文献   

19.
A complete account of the whole developmental process of neurogenesis involves understanding a number of complex underlying molecular processes. Among them, those that govern the crucial transition from proliferative (self-replicating) to neurogenic neural progenitor (NP) cells remain largely unknown. Due to its sequential rostro-caudal gradients of proliferation and neurogenesis, the prospective spinal cord of the chick embryo is a good experimental system to study this issue. We report that the NOTCH ligand DELTA-1 is expressed in scattered cycling NP cells in the prospective chick spinal cord preceding the onset of neurogenesis. These Delta-1-expressing progenitors are placed in between the proliferating caudal neural plate (stem zone) and the rostral neurogenic zone (NZ) where neurons are born. Thus, these Delta-1-expressing progenitors define a proliferation to neurogenesis transition zone (PNTZ). Gain and loss of function experiments carried by electroporation demonstrate that the expression of Delta-1 in individual progenitors of the PNTZ is necessary and sufficient to induce neuronal generation. The activation of NOTCH signalling by DELTA-1 in the adjacent progenitors inhibits neurogenesis and is required to maintain proliferation. However, rather than inducing cell cycle exit and neuronal differentiation by a typical lateral inhibition mechanism as in the NZ, DELTA-1/NOTCH signalling functions in a distinct manner in the PNTZ. Thus, the inhibition of NOTCH signalling arrests proliferation but it is not sufficient to elicit neuronal differentiation. Moreover, after the expression of Delta-1 PNTZ NP continue cycling and induce the expression of Tis21, a gene that is upregulated in neurogenic progenitors, before generating neurons. Together, these experiments unravel a novel function of DELTA-NOTCH signalling that regulates the transition from proliferation to neurogenesis in NP cells. We hypothesize that this novel function is evolutionary conserved.  相似文献   

20.
Human adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 (APPL1) and adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 2 (APPL2) are homologous effectors of the small guanosine triphosphatase RAB5 that interact with a diverse set of receptors and signaling proteins and are proposed to function in endosome-mediated signaling. Herein, we investigated the membrane-targeting properties of the APPL1 and APPL2 Bin/Amphiphysin/Rvs (BAR), pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. Coimmunoprecipitation and yeast two-hybrid studies demonstrated that full-length APPL proteins formed homooligomers and heterooligomers and that the APPL minimal BAR domains were necessary and sufficient for mediating APPL-APPL interactions. When fused to a fluorescent protein and overexpressed, all three domains (minimal BAR, PH and PTB) were targeted to cell membranes. Furthermore, full-length APPL proteins bound to phosphoinositides, and the APPL isolated PH or PTB domains were sufficient for in vitro phosphoinositide binding. Live cell imaging showed that full-length APPL-yellow fluorescent protein (YFP) fusion proteins associated with cytosolic membrane structures that underwent movement, fusion and fission events. Overexpression of full-length APPL-YFP fusion proteins was sufficient to recruit endogenous RAB5 to enlarged APPL-associated membrane structures, although APPL1 was not necessary for RAB5 membrane targeting. Taken together, our findings suggest a role for APPL proteins as dynamic scaffolds that modulate RAB5-associated signaling endosomal membranes by their ability to undergo domain-mediated oligomerization, membrane targeting and phosphoinositide binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号