首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Conditions on the vital rates and the mating function are derived which imply existence or nonexistence of exponentially growing persistent age-distributions for age-dependent pair-formation models.  相似文献   

3.
In this paper, single-species nonautonomous dispersal models with delays are considered. An interesting result on the effect of dispersal for persistence and extinction is obtained. That is, if the species is persistent in a patch then it is also persistent in all other patches; if the species is permanent in a patch then it is also permanent in all other patches; if the species is extinct in a patch then it is also extinct in all other patches. Furthermore, some new sufficient conditions for the permanence and extinction of the species in a patch are established. The existence of positive periodic solutions is obtained in the periodic case by employing Teng and Chen's results on the existence of positive periodic solutions for functional differential equations. Received: 26 June 2000 / Revised version: 6 October 2000 / Published online: 10 April 2001  相似文献   

4.
 In this paper we propose a general framework for discrete time one-dimensional Markov population models which is based on two fundamental premises in population dynamics. We show that this framework incorporates both earlier population models, like the Ricker and Hassell models, and experimental observations concerning the structure of density dependence. The two fundamental premises of population dynamics are sufficient to guarantee that the model will exhibit chaotic behaviour for high values of the natural growth and the density-dependent feedback, and this observation is independent of the particular structure of the model. We also study these models when the environment of the population varies stochastically and address the question under what conditions we can find an invariant probability distribution for the population under consideration. The sufficient conditions for this stochastic stability that we derive are of some interest, since studying certain statistical characteristics of these stochastic population processes may only be possible if the process converges to such an invariant distribution. Received 15 May 1995; received in revised form 17 April 1996  相似文献   

5.
A single-species population dynamics with dispersal in a spatially heterogeneous environment is modeled by a nonlinear reaction-diffusion equation with a potential term. To each nonlinear kinetics there corresponds a bifurcation curve that describes the relation between the growth rate and the central density of a steady-state population distribution. Our main concern is an inverse problem for this correspondence. The existence of nonlinear kinetics realizing a prescribed bifurcation curve is established. It is shown that the freedom of such kinetics is of degree finite and even, depending only on the heterogeneity of the environment, and conversely that any nonnegative even integer occurs as the degree of freedom in some environments. A discussion is also made on under what kind of environment the degree is equal to zero or is positive. The mathematical analysis involves the development of a general theory for singular multiplicative Wiener-Hopf integral equations.  相似文献   

6.
The role of harvest in discrete age-structured one-population models has been explored. Considering a few age classes only, together with the overcompensatory Ricker recruitment function, we show that harvest acts as a weak destabilizing effect in case of small values of the year-to-year survival probability P and as a strong stabilizing effect whenever the survival probability approaches unity. In the latter case, assuming n=2 age classes, we find that harvest may transfer a population from the chaotic regime to a state where the equilibrium point (x1*, x2*) becomes stable. However, as the number of age classes increases (which acts as a stabilizing effect in non-exploited models), we find that harvest acts more and more destabilizing, in fact, when the number of age classes has been increased to n=10, our finding is that in case of large values of the survival probabilities, harvest may transfer a population from a state where the equilibrium is stable to the chaotic regime, thus exactly the opposite of what was found in case of n=2. On the other hand, if we replace the Ricker relation with the generalized Beverton and Holt recruitment function with abruptness parameter larger than 2, several of the conclusions derived above are changed. For example, when n is large and the survival probabilities exceed a certain threshold, the equilibrium will always be stable.Revised version: 18 September 2003  相似文献   

7.
In this paper we give a derivation for the allometric scaling relation between the metabolic rate and the mass of animals and plants. We show that the characteristic scaling exponent of 3/4 occurring in this relation is a result of the distribution of sources and sinks within the living organism. We further introduce a principle of least mass and discuss the kind of flows that arise from it.  相似文献   

8.
We investigate a general model describing coevolutionary interaction between a haploid population and a diploid population, each with two alleles at a single locus. Both species are allowed to evolve, with the fitness of the genotypes of each species assumed to depend linearly on the frequencies of the genotypes of the other species. We explore the resulting outcomes of these interactions, in particular determining the location of equilibria under various conditions. The coevolution here is much more complex than that between two haploid populations and allows for the possibility of two polymorphic equilibria. To allow for further analysis, we construct a semi-symmetric model. The variety of outcomes possible even in this second model provides support for the geographic mosaic theory of coevolution by suggesting the possibility of small local populations coevolving to very different outcomes, leading to a shifting geographic mosaic as neighboring populations interact with each other through migration.  相似文献   

9.
Structured population on two patches: modeling dispersal and delay   总被引:3,自引:0,他引:3  
We derive from the age-structured model a system of delay differential equations to describe the interaction of spatial dispersal (over two patches) and time delay (arising from the maturation period). Our model analysis shows that varying the immature death rate can alter the behavior of the homogeneous equilibria, leading to transient oscillations around an intermediate equilibrium and complicated dynamics (in the form of the coexistence of possibly stable synchronized periodic oscillations and unstable phase-locked oscillations) near the largest equilibrium.  相似文献   

10.
The recent broad interest on ratio-dependent based predator functional response calls for detailed qualitative study on ratio-dependent predator-prey differential systems. A first such attempt is documented in the recent work of Kuang and Beretta(1998), where Michaelis-Menten-type ratio-dependent model is studied systematically. Their paper, while contains many new and significant results, is far from complete in answering the many subtle mathematical questions on the global qualitative behavior of solutions of the model. Indeed, many of such important open questions are mentioned in the discussion section of their paper. Through a simple change of variable, we transform the Michaelis-Menten-type ratio-dependent model to a better studied Gause-type predator-prey system. As a result, we can obtain a complete classification of the asymptotic behavior of the solutions of the Michaelis-Menten-type ratio-dependent model. In some cases we can determine how the outcomes depend on the initial conditions. In particular, open questions on the global stability of all equilibria in various cases and the uniqueness of limit cycles are resolved. Biological implications of our results are also presented.  相似文献   

11.
Parametric analysis of the ratio-dependent predator–prey model   总被引:3,自引:0,他引:3  
We present a complete parametric analysis of stability properties and dynamic regimes of an ODE model in which the functional response is a function of the ratio of prey and predator abundances. We show the existence of eight qualitatively different types of system behaviors realized for various parameter values. In particular, there exist areas of coexistence (which may be steady or oscillating), areas in which both populations become extinct, and areas of "conditional coexistence" depending on the initial values. One of the main mathematical features of ratio-dependent models, distinguishing this class from other predator-prey models, is that the Origin is a complicated equilibrium point, whose characteristics crucially determine the main properties of the model. This is the first demonstration of this phenomenon in an ecological model. The model is investigated with methods of the qualitative theory of ODEs and the theory of bifurcations. The biological relevance of the mathematical results is discussed both regarding conservation issues (for which coexistence is desired) and biological control (for which extinction is desired).  相似文献   

12.
Behaviour of simple population models under ecological processes   总被引:1,自引:0,他引:1  
The two most popular and extensively-used discrete models of population growth display the generic bifurcation structure of a hierarchy of period-doubling sequence to chaos with increasing growth rates. In this paper we show that these two models, though they belong to a general class of one-dimensional maps, show very different dynamics when important ecological processes such as immigration and emigration/depletion, are considered. It is important that ecologists recognize the differences between these models before using them to describe their data—or develop optimization strategies—based on these models.  相似文献   

13.
An exact solution of the mutation-recombination equation in continuous time is presented, with linear ordering of the sites and at most one mutation or crossover event taking place at every instant of time. The differential equation may be obtained from a mutation-recombination model with discrete generations, in the limit of short generations, or weak mutation and recombination. The solution relies on the multilinear structure of the dynamical system, and on the commuting properties of the mutation and recombination operators. It is obtained through diagonalization of the mutation term, followed by a transformation to certain measures of linkage disequilibrium that simultaneously linearize and diagonalize the recombination dynamics. The collection of linkage disequilibria, as well as their decay rates, are given in closed form. Received: 26 January 1999 / Revised version: 20 October 2000 / Published online: 10 April 2001  相似文献   

14.
We investigate the equilibrium structure for an evolutionary genetic model in discrete time involving two monoecious populations subject to intraspecific and interspecific random pairwise interactions. A characterization for local stability of an equilibrium is found, related to the proximity of this equilibrium with evolutionarily stable strategies (ESS). This extends to a multi-population framework a principle initially proposed for single populations, which states that the mean population strategy at a locally stable equilibrium is as close as possible to an ESS.  相似文献   

15.
Two closely related stochastic models of parasitic infection are investigated: a non-linear model, where density dependent constraints are included, and a linear model appropriate to the initial behaviour of an epidemic. Host-mortality is included in both models. These models are appropriate to transmission between homogeneously mixing hosts, where the amount of infection which is transferred from one host to another at a single contact depends on the number of parasites in the infecting host. In both models, the basic reproduction ratio R0 can be defined to be the lifetime expected number of offspring of an adult parasite under ideal conditions, but it does not necessarily contain the information needed to separate growth from extinction of infection. In fact we find three regions for a certain parameter where different combinations of parameters determine the behavior of the models. The proofs involve martingale and coupling methods.  相似文献   

16.
 The effect of overcompensatory recruitment and the combined effect of overcompensatory recruitment and generation delay in discrete nonlinear age-structured population models is studied. Considering overcompensatory recruitment alone, we present formal proofs of the supercritical nature of bifurcations (both flip and Hopf) as well as an extensive analysis of dynamics in unstable parameter regions. One important finding here is that in case of small and moderate year to year survival probabilities there are large regions in parameter space where the qualitative behaviour found in a general n+1 dimensional model is retained already in a one-dimensional model. Another result is that the dynamics at or near the boundary of parameter space may be very complicated. Generally, generation delay is found to act as a destabilizing effect but its effect on dynamics is by no means unique. The most profound effect occurs in the n-generation delay cases. In these cases there is no stable equilibrium X * at all, but whenever X * small, a stable cycle of period n+1 where the periodic points in the cycle are on a very special form. In other cases generation delay does not alter the dynamics in any substantial way. Received 25 April 1995; received in revised form 21 November 1995  相似文献   

17.
A functional differential equation that arises from the classic theory of neural networks is considered. As the length of the absolute refractory period is varied, there is, as shown here, a super-critical Hopf bifurcation. As the ratio of the refractory period to the time constant of the network increases, a novel relaxation oscillation occurs. Some approximations are made and the period of this oscillation is computed.  相似文献   

18.
We examine some simple population models that incorporate a time delay which is not a constant but is instead a known periodic function of time. We examine what effect this periodic variation has on the linear stability of the equilibrium states of scalar population models and of a simple predator prey system. The case when the delay differs from a constant by a small amplitude periodic perturbation can be treated analytically by using two-timing methods. Of particular interest is the case when the system is initially marginally stable. The introduction of variation in the delay can then have either a stabilising effect or a destabilizing one, depending on the frequency of the periodic perturbation. The case when the periodic perturbation has large amplitude is studied numerically. If the fluctuation is large enough the effect can be stabilising.  相似文献   

19.
According to our previous model, oligodendrocyte – type 2 (O-2A) astrocyte progenitor cells become competent for differentiation in vitro after they complete a certain number of critical mitotic cycles. After attaining the competency to differentiate, progenitor cells divide with fixed probability p in subsequent cycles. The number of critical cycles is random; analysis of data suggests that it varies from zero to two. The present paper presents an alternative model in which there are no critical cycles, and the probability that a progenitor cell will divide again decreases gradually to a plateau value as the number of completed mitotic cycles increases. In particular all progenitor cells have the ability to differentiate from the time of plating. The Kiefer-Wolfowitz procedure is used to fit the new model to experimental data on the clonal growth of purified O-2A progenitor cells obtained from the optic nerves of 7 day old rats. The new model is shown to fit the experimental data well, indicating that it is not possible to determine whether critical cycles exist on the basis of these experimental data. In contrast to the fit of the previous model, which suggested that the addition of thyroid hormone increased the limiting probability of differentiation as the number of mitotic cycles increases, the fit of the new model suggests that the addition of thyroid hormone has almost no effect on the limiting probability of differentiation. Received: 6 March 2000 / Revised version: 18 September 2000 / Published online: 30 April 2001  相似文献   

20.
Drug treatment of patients with schistosomiasis may select for drug-resistant parasites. In this article, we formulate a deterministic model with multiple strains of schistosomes (helminth parasites with a two-host life cycles) in order to explore the role of drug treatment in the maintenance of a polymorphism of parasite strains that differ in their resistance levels. The basic reproductive numbers for all strains are computed, and are shown to determine the stabilities of equilibria of the model and consequently the distribution of parasite phenotypes with different levels of drug tolerance. Analysis of our model shows that the likelihood that resistant strains will increase in frequency depends on the interplay between their relative fitness, the cost of resistance, and the degree of selection pressure exerted by the drug treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号