首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The platyfish (Xiphophorus maculatus), in which sex chromosomes are evident from stable and predictable inheritance of sex, is one of the best-studied lower vertebrates with respect to sex determination. In order to identify the structural equivalent for this in the karyotype, which does not contain heteromorphic pairs of chromosomes, two sex-linked molecular probes were used for fluorescent in situ hybridization analysis. One probe, derived from the melanoma oncogene locus ONC-Xmrk, stained both the X and the Y chromosome. This cytogenetic analysis mapped the sex-determining locus to the subtelomeric region of a medium-sized telocentric chromosome. Another probe, a repetitive element (XIR), specifically labeled the Y chromosome in metaphase spreads and in interphase nuclei. The sex chromosomes of X. maculatus can be considered to be at an early stage of evolution of gonosomes. Expansion of the XIR repeat is obviously one of the earliest of the molecular events that lead to divergence of the Y chromosome and recombinational isolation of the sex-determining locus. Received: 10 December 1999; in revised form: 20 January 2000 / Accepted: 24 January 2000  相似文献   

2.
Chromosomal in situ suppression (CISS)-hybridization of biotinylated phage DNA-library inserts from sorted human chromosomes was used to decorate chromosomes 1 and 7 specifically from pter to qter and to detect structural aberrations of these chromosomes in irradiated human peripheral lymphocytes. In addition, probe pUC1.77 was used to mark the 1q12 subregion in normal and aberrant chromosomes 1. Low LET radiation (60Co-gamma-rays; 1.17 and 1.33 MeV) of lymphocyte cultures was performed with various doses (D = 0, 2, 4, 8 Gy) 5 h after stimulation with phytohaemagglutinin. Irradiated cells were cultivated for an additional 67 h before Colcemid arrested metaphase spreads were obtained. Aberrations of the specifically stained chromosomes, such as deletions, dicentrics, and rings, were readily scored after in situ hybridization with either the 1q12 specific probe or DNA-library inserts. By the latter approach, translocations of the specifically stained chromosomes could also be reliably assessed. A linear increase of the percentage of specifically stained aberrant chromosomes was observed when plotted as a function of the square of the dose D. A particular advantage of this new approach is provided by the possibility to delineate numerical and structural chromosome aberrations directly in interphase nuclei. These results indicate that cytogenetic monitoring of ionizing radiation may be considerably facilitated by CISS-hybridization.  相似文献   

3.
Fluorescence in situ hybridization (FISH) with chromosome-specific probes has been applied to detection of numerical aberrations involving chromosomes 13, 18, and 21 in metaphase and interphase amniocytes. High-complexity, composite probes for chromosomes 13, 18, and 21 were used as hybridization probes for this study. These probes were constructed as chromosome-specific libraries in Bluescribe plasmids and are designated pBS-13, pBS-18, and pBS-21. Elements of these probes bind at numerous sites along the target chromosome and, when detected fluorescently, stain essentially the entire long arm of the target chromosome. The target chromosome number (i.e., the number of chromosomes of the type for which the probe was specific) was correctly determined in 20 of 20 samples in which metaphase spreads were analyzed and in 43 of 43 samples in which interphase nuclei were analyzed; all of these studies were conducted in blind fashion. These results suggest the utility of FISH with composite probes for rapid detection of numerical aberrations in metaphase and interphase amniotic cells.  相似文献   

4.
Fluorescencein situ hybridization (FISH) is a powerful molecular cytogenetic technique which allows rapid detection of aneuploidies on interphase cells and metaphase spreads. The aim of the present study was to evaluate FISH as a tool in prenatal diagnosis of aneuploidies in high risk pregnancies in an Indian set up. Prenatal diagnosis was carried out in 88 high-risk pregnancies using FISH and cytogenetic analysis. Multicolour commercially available FISH probes specific for chromosomes 13, 18, 21, X and Y were used. Interphase FISH was done on uncultured cells from chorionic villus and amniotic fluid samples. FISH on metaphase spreads was done from cord blood samples. The results of FISH were in conformity with the results of cytogenetic analysis in all the normal and aneuploid cases except in one case of structural chromosomal abnormality. The hybridization efficiency of the 5 probes used for the detection of aneuploidies was 100%. Using these probes FISH assay yielded discrete differences in the signal profiles between cytogenetically normal and abnormal samples. The overall mean interphase disomic signal patterns of chromosomes 13, 18, 21, X and Y were 94.45%; for interphase trisomic signal pattern of chromosome 21 was 97.3%. Interphase FISH is very useful in urgent high risk cases. The use of FISH overcomes the difficulties of conventional banding on metaphase spreads and reduces the time of reporting. However, with the limited number of probes used, the conventional cytogenetic analysis serves as a gold standard at present. It should be employed as an adjunctive tool to conventional cytogenetics  相似文献   

5.
Routine cytogenetic analysis of an amniotic fluid sample revealed a large brightly fluorescent region in the short arm of chromosome 14 in an otherwise normal male karyotype (46,XY,14p+ + +). This site was also present in the paternal karyotype. In situ hybridisation to a Y-chromosome-specific DNA probe confirmed that the father had a Y/14 translocation. The incidence of two hybridisation bodies (large hybridisation sites), detecting both the translocated Y chromatin and the normal Y chromosome, was lower in interphase nuclei (44.3%) than in metaphase spreads (95.2%). The relevance of these observations to the potential use of in situ hybridisation to interphase nuclei for prenatal diagnosis is discussed.  相似文献   

6.
Summary Two cloned repetitive DNA probes, pXBR and CY1, which bind preferentially to specific regions of the human X and Y chromosome, respectively, were used to study the distribution of the sex chromosomes in human lymphocyte nuclei by in situ hybridization experiments. Our data indicate a large variability of the distances between the sex chromosomes in male and female interphase nuclei. However, the mean distance observed between the X and Y chromosome was significantly smaller than the mean distance observed between the two X-chromosomes. The distribution of distances determined experimentally is compared with three model distributions of distances, and the question of a non-random distribution of sex chromosomes is discussed. Mathematical details of these model distributions are provided in an Appendix to this paper. In the case of a human translocation chromosome (XqterXp22.2::Yq11Y qter) contained in the Chinese hamster x human hybrid cell line 445 x 393, the binding sites of pXBR and CY1 were found close to each other in most interphase nuclei. These data demonstrate the potential use of chromosome-specific repetitive DNA probes to study the problem of interphase chromosome topography.  相似文献   

7.
A degenerate alpha satellite DNA probe specific for a repeated sequence on human chromosomes 13 and 21 was synthesized using the polymerase chain reaction (PCR). Fluorescence in situ hybridization (FISH) with this probe to normal metaphase spreads revealed strong probe binding to the centromeric regions of human chromosomes 13 and 21 with negligible cross-hybridization with other chromosomes. FISH to normal interphase cell nuclei showed four distinct domains of probe binding. However, hybridization with probe to interphase and metaphase preparations from one apparently normal human male resulted in only three major binding domains. Metaphase chromosome analysis revealed a centromeric deletion on one chromosome 21 that caused greatly reduced probe binding. The result suggest caution in the interpretation of interphase ploidy studies performed with chromosome-specific alphoid DNA probes.  相似文献   

8.
J Meyne  R K Moyzis 《Genomics》1989,4(4):472-478
The pericentric region of human chromosome 17 was targeted for specific in situ hybridization of the alphoid DNA subfamily enriched on this chromosome. A recombinant DNA clone containing the entire higher order chromosome 17 alphoid repeat preferentially hybridized to the pericentric region of chromosome 17, but frequently cross-hybridized to other chromosomes under normal stringency conditions. Chromosomal specificity, after in situ hybridization to metaphase spreads and interphase nuclei, was improved by using a subclone containing predominantly monomer 1 of the higher order repeat. Further improvement was achieved by synthesizing a 42-nucleotide oligomer of a divergent region of monomer 1. Southern blot analysis confirmed the improved specificity of the shorter probes. Reducing the potential of repetitive DNA probes to cross-hybridize increases the usefulness of the probes, especially when they are used for localizing individual chromosomes in interphase nuclei.  相似文献   

9.
Summary Conventional and molecular cytogenetic analyses of three murine cancer cell lines that had been induced in male athymic mice by the injection of three different human prostate cancer cell lines revealed selective amplification of the Y chromosome. In particular, analysis of metaphase and interphase nuclei by fluorescence in situ hybridization (FISH) with the mouse Y chromosome-specific DNA painting probe revealed the presence of various numbers of Y chromosomes, ranging from one to eight, with a large majority of nuclei showing two copies (46.5–60.1%). In Interphase nuclei, the Y chromosomes showed distinct morphology, allowing identification irrespective of whether the preparations were treated for 15 min or for 5 h with Colcemid, a chemical known to cause chromosome condensation. However, FISH performed on human lymphocyte cultures with chromosome-specific DNA painting probes other than the Y chromosome did not reveal condensed chromosome morphology in interphase nuclei even after 12 h of Colcemid treatment. Our FISH results indicate that (1) the Y chromosome is selectively amplified in all three cell lines; (2) the mouse Y chromosome number is comparable in both interphase and metaphase cells; (3) the Y chromosome number varies between one and eight, with a large majority of cells showing two or three copies in most interphase nuclei; (4) the condensation of the Y chromosome is not affected by the duration of Colcemid treatment but by its inherent DNA constitution; and (5) the number of copies of the Y chromosome is increased and retained not only in human prostate tumor cell lines but also in murine tumors induced by these prostate tumor cell lines.  相似文献   

10.
Summary Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA.  相似文献   

11.
12.
Summary The in situ spatial distribution of nucleolus-organizing-region (NOR) bearing chromosomes in relation to the inactive X chromosome was studied during interphase in human fibroblasts. The respective positions of these chromosomes were examined in 30 growing and 32 resting fibroblasts from reconstructed nuclei, using nucleoli and the Barr body as ultrastructural markers. Experimental values for the distance between the nucleoli and the Barr body were estimated by their coefficient of closeness and compared to the uniform distribution. The following results were obtained: (1) the distribution patterns for the two populations of nuclei were similar, (2) the distribution of the NOR-bearing chromosomes in relation to the inactive X chromosome varied and differed significantly from a uniform distribution, and (3) in many cases the Barr body was observed to be in a juxta-nucleolar position. The internal distribution revealed by this study is compared with the data in the literature, especially with the conflicting data obtained by other methods used to determine the interphase arrangement of chromosomes. The relationship between interphase and metaphase arrangements such as can be deduced with these methods, is discussed in relation to the mechanisms of the formation of metaphase plates or chromatid translocations.  相似文献   

13.
Repeated DNAs from the constitutive heterochromatin of human chromosomes 1 and 18 were used as probes in nonradioactive in situ hybridization experiments to define specific numerical and structural chromosome aberrations in three human glioma cell lines and one neuroblastoma cell line. The number of spots detected in interphase nuclei of these tumor cell lines and in normal diploid nuclei correlated well with metaphase counts of chromosomes specifically labeled by in situ hybridization. Rapid and reliable assessments of aneuploid chromosome numbers in tumor lines in double hybridization experiments were achieved, and rare cells with bizarre phenotype and chromosome constitution could be evaluated in a given tumor cell population. Even with suboptimal or rare chromosome spreads specific chromosome aberrations were delineated. As more extensive probe sets become available this approach will become increasingly powerful for uncovering various genetic alterations and their progression in tumor cells.  相似文献   

14.
Early diagnosis is very important in pre- and postnatal diagnosis of Down syndrome. This study examines the use of fluorescence in situ hybridization (FISH) to detect trisomy 21 in interphase nuclei and metaphase chromosome obtained from fifty-four Down syndrome patients with a regular type trisomy 21. Three of them showed six hybridization signals on both interphase nuclei and metaphase spreads instead of five signals corresponding to two chromosomes 13 and three chromosomes 21 although they were cytogenetically trisomy 21. Simultaneous application of probe combination revealed that one of the extra signals of chromosomes 13/21 a-satellite probe was located on chromosome 22 in two cases and one extra signal on chromosomes 15 in one case. In addition, another case showed four hybridization signals on both interphase nuclei and metaphase spreads instead of five signals, indicating deletion of the chromosome specific alpha-satellite DNA sequence of chromosome 13/21. These centromeric sequence changes may have pathological significance in the appearance of aneuploidy because they may be involved in the important centromere function.  相似文献   

15.
J. Żuk 《Chromosoma》1969,27(3):338-353
The Y chromosome heterochromatin in Rumex thyrsiflorus has been analyzed. In natural populations the Y chromosome shows a higher morphological variability than the X chromosome. The total duration of replication of Y chromosomes is about 2 hrs longer than that of euchromatin. Autoradiography with tritiated thymidine showed that chromocentres formed by Y chromosomes in interphase nuclei retain their heterochromatic form during DNA replication. — Y chromosome heterochromatin in interphase nuclei is stained pink, while the rest of the nucleus stains green after fast green-eosin staining for histones. — During the premeiotic stage of PMC development Y chromosomes are no longer visible as compact bodies and become more fuzzy in appearance. A diffuse state of Y coincides with intense RNA synthesis. Therefore genetic activity of Y chromosomes or their parts during premeiotic stage of microsporogenesis is postulated.  相似文献   

16.
Herein we report the results of the first major prospective study directly comparing aneuploidy detection by fluorescence in situ hybridization of interphase nuclei with the results obtained by cytogenetic analysis. We constructed probes derived from specific subregions of human chromosomes 21, 18, 13, X, and Y that give a single copy-like signal when used in conjunction with suppression hybridization. A total of 526 independent amniotic fluid samples were analyzed in a blind fashion. All five probes were analyzed on 117 samples, while subsets of these five probes were used on the remaining samples (because of insufficient sample size), for a total of over 900 autosomal hybridization reactions and over 400 sex chromosome hybridization reactions. In this blind series, 21 of 21 abnormal samples were correctly identified. The remaining samples were correctly classified as disomic for these five chromosomes. The combination of chromosome-specific probe sets composed primarily of cosmid contigs and optimized hybridization/detection allowed accurate chromosome enumeration in uncultured human amniotic fluid cells, consistent with the results obtained by traditional cytogenetic analysis.  相似文献   

17.
Numerical chromosome abnormalities were studied in single blastomeres from arrested or otherwise morphologically abnormal human preimplantation embryos. A 6-h FISH procedure with fluorochrome-labeled DNA probes was developed to determine numerical abnormalities of chromosomes X, Y, and 18. The three chromosomes were stained and detected simultaneously in 571 blastomeres from 131 embryos. Successful analysis including biopsy, fixation, and FISH analysis was achieved in 86.5% of all blastomeres. The procedure described here offers a reliable alternative to sexing of embryos by PCR and allows simultaneous ploidy assessment. For the three chromosomes tested, numerical aberrations were found in 56.5% of the embryos. Most abnormal embryos were polyploid or mosaics, and 6.1% were aneuploid for gonosomes or chromosome 18. Extrapolation of these results to all human chromosomes suggests that the majority of abnormally developing and arrested human embryos carry numerical chromosome abnormalities.  相似文献   

18.
Multiplex-fluorescence in situ hybridization (M-FISH) was initially developed to stain human chromosomes--the 22 autosomes and X and Y sex chromosomes--with uniquely distinctive colors to facilitate karyotyping. The characteristic spectral signatures of all different combinations of fluorochromes are determined by multichannel image-analysis methods. Advantages of M-FISH include rapid analysis of metaphase spreads, even in complex cases with multiple chromosomal rearrangements, and identification of marker chromosomes. The M-FISH technology has been extended to other species, such as the mouse. Furthermore, in addition to painting probes, the method has been used with a variety of region-specific probes. M-FISH has even recently been used for 3D studies to analyze the distribution of human chromosomes in intact and preserved interphase nuclei. Hence, M-FISH has evolved into an essential tool for both clinical diagnostics and basic research. In this protocol, we describe how to use M-FISH to karyotype chromosomes, a procedure that takes approximately 14 d if new M-FISH probes have to be generated and 3 d if the M-FISH probes are ready to use.  相似文献   

19.
Summary Chromosome aberrations in two glioma cell lines were analyzed using biotinylated DNA library probes that specifically decorate chromosomes 1, 4, 7, 18 and 22 from pter to qter. Numerical changes, deletions and rearrangements of these chromosomes were radily visualized in metaphase spreads, as well as in early prophase and interphase nuclei. Complete chromosomes, deleted chromosomes and segments of translocated chromosomes were rapidly delineated in very complex karyotypes. Simultaneous hybridizations with additional subregional probes were used to further define aberrant chromosomes. Digital image analysis was used to quantitate the total complement of specific chromosomal DNAs in individual metaphase and interphase cells of each cell line. In spite of the fact that both glioma lines have been passaged in vitro for many years, an under-representation of chromosome 22 and an over-representation of chromosome 7 (specifically 7p) were observed. These observations agree with previous studies on gliomas. In addition, sequences of chromosome 4 were also found to be under-represented, especially in TC 593. These analyses indicate the power of these methods for pinpointing chromosome segments that are altered in specific types of tumors.  相似文献   

20.
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号