首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Exercise performed above the lactate threshold (OLa) produces a slowly-developing phase of oxygen uptake (VO2) kinetics which elevates VO2 above that predicted from the sub-OLa VO2-work rate relationship. This phenomenon has only been demonstrated, to date, in subjects who were relatively homogeneous with respect to fitness. This investigation therefore examined whether this behaviour occurred at a given absolute VO2 or whether it was a characteristic of supra-OLa exercise in a group of subjects with over a threefold range of OLa (990-3000 ml O2.min-1) and peak VO2 (1600-5260 ml O2.min-1). Twelve healthy subjects performed: 1) exhausting incremental cycle ergometer exercise for estimation of OLa (OLa) and peak VO2, and 11) a series of constant-load tests above and below OLa for determination of the VO2 profile and efficiency of work. During all tests expired ventilation, VO2 and carbon dioxide production were monitored breath-by-breath. The efficiency of work determined during incremental exercise (28.1 +/- 0.7%, means +/- SE, n = 12) did not differ from that determined during sub-OLa constant-load exercise (27.4 +/- 0.5%, p greater than 0.05). For constant-load exercise, VO2 rose above that predicted, from the sub-OLa VO2-work rate relationship, for all supra-OLa work rates. This was evident above 990 ml O2.min-1 in the least fit subject but only above 3000 ml O2.min-1 in the fittest subject. As a consequence the efficiency of work was reduced from 27.4 +/- 0.5% for sub-OLa exercise to 22.6 +/- 0.4% (p less than 0.05) at the lowest supra-OLa work rate (i.e. OLa + 20 W, on average).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
The purpose of this study was to examine the interactions of adaptations in O2 transport and utilization under conditions of altered arterial O2 content (CaO2), during rest to exercise transitions. Simultaneous measures of alveolar (VO2alv) and leg (VO2mus) oxygen uptake and leg blood flow (LBF) responses were obtained in normoxic (FiO2 (inspired fraction of O2) = 0.21), hypoxic (FiO2 = 0.14), and hyperoxic (FiO2 = 0.70) gas breathing conditions. Six healthy subjects performed transitions in leg kicking exercise from rest to 48 +/- 3 W. LBF was measured continuously with pulsed and echo Doppler ultrasound methods, VO2alv was measured breath-by-breath at the mouth and VO2mus was determined from LBF and radial artery and femoral vein blood samples. Even though hypoxia reduced CaO2 to 175.9 +/- 5.0 from 193.2 +/- 5.0 mL/L in normoxia, and hyperoxia increased CaO2 to 205.5 +/- 4.1 mL/L, there were no differences in the absolute values of VO2alv or VO2mus across gas conditions at any of the rest or exercise time points. A reduction in leg O2 delivery in hypoxia at the onset of exercise was compensated by a nonsignificant increase in O2 extraction and later by small increases in LBF to maintain VO2mus. The dynamic response of VO2alv was slower in the hypoxic condition; however, hyperoxia did not affect the responses of oxygen delivery or uptake at the onset of moderate intensity leg kicking exercise. The finding of similar VO2mus responses at the onset of exercise for all gas conditions demonstrated that physiological adaptations in LBF and O2 extraction were possible, to counter significant alterations in CaO2. These results show the importance of the interplay between O2 supply and O2 utilization mechanisms in meeting the challenge provided by small alterations in O2 content at the onset of this submaximal exercise task.  相似文献   

6.
7.
Seven male subjects performed progressive exercises with a light work load on an upper limb or bicycle ergometer in the sitting position. At any comparable work load above zero, arm exercise induced higher oxygen uptake, ventilation, heart rate, oxygen pulse, respiratory rate and tidal volume than leg exercise. At similar levels of VO2 above 0.45 1 X min-1, heart rate and ventilation were higher during arm exercise. A close linear relationship between carbon dioxide output and oxygen uptake was observed during both arm and leg exercises, the slope for arm work being steeper. The ventilatory equivalent for VCO2 (VE/VCO2) gradually decreased during both types of exercise. The ventilatory equivalent for VO2(VE/VO2) remained constant (arm) while it rose (leg) to a peak at 9.8 W and then gradually decreased. Ventilation in relation to tidal volume had a linear relationship with leg exercise, but became curvilinear with arm exercise after tidal volume exceeded 1100 ml. The observed differences in response between arm and leg exercises at a given work load appear to be influenced by differences in sympathetic outflow due to the greater level of static contraction of the relatively small muscle groups required by arm exercise.  相似文献   

8.
Based on observations that the difference between men and women in estimates of arm musculature is greater than the difference in leg musculature, it was hypothesized that the gender difference in peak oxygen uptake (VO2; l.min-1) would be greater for arm exercise than leg exercise. To test this hypothesis, 19 (10 men, 9 women) highly trained swimmers (HT) and 20 (10 men, 10 women) untrained students (UT) were tested for peak VO2 on cycle and arm-crank ergometers. Arm and leg fat-free volumes (FFV) were measured to provide an estimate of muscle distribution. No gender difference was observed in either the arm-to-leg peak VO2 ratio (0.699 for the men vs 0.696 for the women) or in the arm-to-leg FFV ratio (0.410 for the men vs 0.402 for the women). Although the proportion of musculature in the arms as assessed by the FFV appeared to be the same in men and women, the similarity in muscle distribution was probably not responsible for the identical average arm-to-leg peak VO2 ratios. The variance in the muscle distribution accounted for only 2-4% of the variance in the arm-to-leg peak VO2 differences within individuals. We conclude that factors other than arm and leg muscle dimensions account for the variability in the arm-to-leg peak VO2 ratio and that the gender difference in peak VO2 is the same for arm and leg exercise.  相似文献   

9.
10.
Changes in intracellular Po2 in myoglobin containing skeletal muscle during exercise were estimated in normal nonathlete subjects from measurements of shifts of CO between blood and muscle under conditions where the total body CO stores remained constant. Exercise was performed on a bicycle ergometer. In 1.5-2 and 6-7 min runs at Vo2 max with the subject breathing 21% O2, mean MbCO/HbCO increased 146 +/- 7 and 163 +/- 11% of resting values, respectively (P less than 0.05). With the subjects breathing 13-14% O2, in 1.5-2 and 6-7 min runs, Vo2 max fell an average of 4.3 +/- 5.1% and 12.0 +/- 5.2%, respectively, and mean MbCO/HbCO increased to 233 +/- 18% and 210 +/- 52% of resting value, respectively (P less than 0.05). These findings suggest that mean myoglobin Po2 fell during exercise at Vo2 max, with the subjects breathing 21% O2 and the decrease in mean myoglobin Po2 was greater with the subject breathing 13-14% O2. There was considerable variability in different subjects and in some, the data were not consistent with intracellular O2 availability limiting aerobic metabolism. The data support a postulate that there are several limiting factors for the aerobic capacity, including intracellular O2 availability.  相似文献   

11.
Twelve spinal cord-injured males performed arm-crank exercise (ACE) with and without concurrent functional neuromuscular stimulation (FNS) of paralyzed leg muscles to investigate the hypothesis that FNS would augment cardiovascular performance during submaximal ACE. Six men who exhibited vigorous isometric contractions of thigh and calf muscles were classed as "responders" to FNS (R), and the remaining subjects with poor or nonexistent contractions served as "nonresponder controls" (C). Steady-state heart rate and oxygen uptake during ACE at 30, 60, and 90 W were not appreciably different from the ACE + FNS condition. However, cardiac outputs in R were augmented by 30% during FNS at rest (from 4.9 to 6.4 l/min), by 18% during 30-W ACE + FNS (from 8.6 to 10.1 l/min), and by 28% during 90-W ACE + FNS (from 12.1 to 15.6 l/min). Similarly, resting stroke volumes were increased by 18% (9 ml) and by 23% (19 ml) at 60 W during FNS in the R group. Calculated total peripheral resistance was reduced at rest and during 90-W ACE + FNS by approximately 24%. In contrast, no alterations of circulatory hemodynamics were observed for C subjects. These data indicate that FNS-induced contractions of paralyzed leg muscles augment venous return to aid central cardiovascular control during upper-body submaximal exercise in paraplegics.  相似文献   

12.
The effect of leg exercise and of arm exercise in sitting and standing body positions on energy output and on some cardiorespiratory parameters was studied in seven male subjects. Oxygen uptake (VO2), heart rate (fH), pulmonary ventilation (VE) and respiratory frequency were measured at rest, in the 7-8th min of submaximal work (300, 600, 900 kpm/min), and at maximal effort. Significantly higher Vo2, fH, and VE in arm cranking than in cycling were found at submaximal work loads above 300 kpm/min. Though the maximal work load in arm exercise was 50-60% of that in cycling, Vo2 in arm work was at maximal effort only 22% lower than in leg exercise while the difference in fH was insignificant. No differences were found in arm work between the results obtained at any work level in sitting and standing body positions. The only postural difference in arm work was a 13% higher work load achieved at maximal effort when standing than when sitting. Differences in fH between arm and leg exercise were much smaller for the same Vo2 than for the same work load and were time dependent. While fH quickly leveled off in leg exercise, fH in arm cranking rose steadily during the first 6 min of work which created the fH differences observed in the 7-8 min of submaximal arm arm and leg exercise. At submaximal work levels a tendency to synchronize the respiratory frequency with the frequency of the rotatory movements was more apparent in arm cranking than in cycling.  相似文献   

13.
14.
We tested the hypothesis that kinetics of O(2) uptake (VO(2)) measured in the transition to exercise near or above peak VO(2) (VO(2 peak)) would be slower than those for subventilatory threshold exercise. Eight healthy young men exercised at approximately 57, approximately 96, and approximately 125% VO(2 peak). Data were fit by a two- or three-component exponential model and with a semilogarithmic transformation that tested the difference between required VO(2) and measured VO(2). With the exponential model, phase 2 kinetics appeared to be faster at 125% VO(2 peak) [time constant (tau(2)) = 16.3 +/- 8.8 (SE) s] than at 57% VO(2 peak) (tau(2) = 29. 4 +/- 4.0 s) but were not different from that at 96% VO(2 peak) exercise (tau(2) = 22.1 +/- 2.1 s). VO(2) at the completion of phase 2 was 77 and 80% VO(2 peak) in tests predicted to require 96 and 125% VO(2 peak). When VO(2) kinetics were calculated with the semilogarithmic model, the estimated tau(2) at 96% VO(2 peak) (49.7 +/- 5.1 s) and 125% VO(2 peak) (40.2 +/- 5.1 s) were slower than with the exponential model. These results are consistent with our hypothesis and with a model in which the cardiovascular system is compromised during very heavy exercise.  相似文献   

15.
16.
Measurement of skin sympathetic nerve activity (SSNA) during isometric exercise has been previously limited to handgrip. We hypothesized that isometric leg exercise due to the greater muscle mass of the leg would elicit greater SSNA responses than arm exercise because of presumably greater central command and muscle mechanoreceptor activation. To compare the effect of isometric arm and leg exercise on SSNA and cutaneous end-organ responses, 10 subjects performed 2 min of isometric knee extension (IKE) and handgrip (IHG) at 30% of maximal voluntary contraction followed by 2 min of postexercise muscle ischemia (PEMI) in a normothermic environment. SSNA was recorded from the peroneal nerve. Cutaneous vascular conductance (laser-Doppler flux/mean arterial pressure) and electrodermal activity were measured within the field of cutaneous afferent discharge. Heart rate and mean arterial pressure significantly increased by 16 +/- 3 and 23 +/- 3 beats/min and by 22 +/- 2 and 27 +/- 3 mmHg from baseline during IHG and IKE, respectively. Heart rate and mean arterial pressure responses were significantly greater during IKE compared with IHG. SSNA increased significantly and comparably during IHG and IKE (52 +/- 20 and 50 +/- 13%, respectively). During PEMI, SSNA and heart rate returned to baseline, whereas mean arterial pressure remained significantly elevated (Delta12 +/- 2 and Delta13 +/- 2 mmHg from baseline for IHG and IKE, respectively). Neither cutaneous vascular conductance nor electrodermal activity was significantly altered by either exercise or PEMI. These results indicate that, despite cardiovascular differences in response to IHG and IKE, SSNA responses are similar at the same exercise intensity. Therefore, the findings suggest that relative effort and not muscle mass is the main determinant of exercise-induced SSNA responses in humans.  相似文献   

17.
Effects of resistance and aerobic training on the ease of physical activity during and after weight loss are unknown. The purpose of the study was to determine what effect weight loss combined with either aerobic or resistance training has on the ease of locomotion (net V[Combining Dot Above]O2 and heart rate). It is hypothesized that exercise training will result in an increased ease, lowers heart rate during locomotion. Seventy-three overweight premenopausal women were assigned to diet and aerobic training, diet and resistance training, or diet only. Subjects were evaluated while overweight, after diet-induced weight loss (average, 12.5 kg loss), and 1 year after weight loss (5.5 kg regain). Submaximal walking, grade walking, stair climbing, and bike oxygen uptake and heart rate were measured at all time points. Weight loss diet was 800 kcal per day. Exercisers trained 3 times per week during weight loss and 2 times per week during 1-year follow-up. Resistance training increased strength, and aerobic training increased maximum oxygen uptake. Net submaximal oxygen uptake was not affected by weight loss or exercise training. However, heart rate during walking, stair climbing, and bicycling was reduced after weight loss. No significant differences in reduction in heart rate were observed among the 3 treatment groups for locomotion after weight loss. However, during 1-year follow-up, exercise training resulted in maintenance of lower submaximal heart rate, whereas nonexercisers increased heart rate during locomotion. Results suggest that moderately intense exercise is helpful in improving the ease of movement after weight loss. Exercise training may be helpful in increasing the participation in free-living physical activity.  相似文献   

18.
To test the hypothesis that pyruvate dehydrogenase (PDH) is differentially regulated in specific human muscles, regulation of PDH was examined in triceps, deltoid, and vastus lateralis at rest and during intense exercise. To elicit considerable glycogen use, subjects performed 30 min of exhaustive arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P < or = 0.05) in vastus lateralis than in triceps and deltoid as was the activity of oxidative enzymes. Net muscle glycogen utilization was similar in vastus lateralis and triceps ( approximately 50%) but less in deltoid (likely reflecting less recruitment of deltoid), while muscle lactate accumulation was approximately 55% higher (P < or = 0.05) in triceps than vastus lateralis. Exercise induced (P < or = 0.05) dephosphorylation of both PDH-E1 alpha site 1 and site 2 in all three muscles, but it was more pronounced at PDH-E1 alpha site 1 in triceps than in vastus lateralis (P < or = 0.05). The increase in activity of the active form of PDH (PDHa) after 10 min of exercise was more marked in vastus lateralis ( approximately 246%) than in triceps ( approximately 160%), but when it was related to total PDH-E1 alpha protein content, no difference was evident. In conclusion, PDH protein content seems to be related to metabolic enzyme profile, rather than myosin heavy chain composition, and less PDH capacity in triceps is a likely contributing factor to higher lactate accumulation in triceps than in vastus lateralis.  相似文献   

19.
20.
To compare some psychophysiological responses to arm exercise with those to leg exercise, an experiment was carried out on electronically braked bicycle ergometers, one being adapted for arm exercise. Eight healthy males took part in the experiment with stepwise increases in exercise intensity every 4 min: 40-70-100-150-200 W in cycling and 20-35-50-70-100 W in arm cranking. Towards the end of each 4 min period, ratings of perceived exertion were obtained on the RPE scale and on a new category ratio (CR) scale:heart rate (HR) and blood lactate accumulation (BL) were also measured. The responses obtained were about twice as high or more for arm cranking than for cycling. The biggest difference was found for BL and the smallest for HR and RPE. The incremental functions were similar in both activities, with approximately linear increases in HR and RPE and positively accelerating functions for CR (exponents about 1.9) and BL (exponents 2.5 and 3.3 respectively). When perceived exertion (according to the CR scale) was set as the dependent variable and a simple combination of HR and BL was used as the independent variable, a linear relationship was obtained for both kinds of exercise, as has previously been found in cycling, running, and walking. The results thus give support for the following generalization: For exercise of a steady state type with increasing loads the incremental curve for perceived exertion can be predicted from a simple combination of HR and BL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号