首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Age-related macular degeneration (AMD) leads to dysfunction and degeneration of retinal photoreceptor cells. This disease is characterized, in part, by the development of extracellular deposits called drusen. The presence of drusen is correlated with the development of AMD, although little is known about drusen composition or biogenesis. Drusen form within Bruch's membrane, a stratified extracellular matrix situated between the retinal pigmented epithelium and choriocapillaris. Because of this association, we sought to determine whether drusen contain known extracellular matrix constituents. Antibodies directed against a battery of extracellular matrix molecules were screened on drusen-containing sections from human donor eyes, including donors with clinically documented AMD. Antibodies directed against vitronectin, a plasma protein and extracellular matrix component, exhibit intense and consistent reactivity with drusen; antibodies to the conformationally distinct, heparin binding form of human vitronectin are similarly immunoreactive. No differences in vitronectin immunoreactivity between hard and soft drusen, or between macular and extramacular regions, have been observed. RT-PCR analyses revealed that vitronectin mRNA is expressed in the retinal pigmented epithelium (RPE)-choroidal complex and cultured RPE cells. These data document that vitronectin is a major constituent of human ocular drusen and that vitronectin mRNA is synthesized locally. Based on these data, we propose that vitronectin may participate in the pathogenesis of AMD.  相似文献   

2.
One of the earliest signs of age‐related macular degeneration (AMD) is the formation of drusen which are extracellular deposits beneath the retinal pigmented epithelium (RPE). To investigate the relationship between drusen and AMD, we focused on amyloid β (Aβ), a major component of drusen and also of senile plaques in the brain of Alzheimer's patients. We previously reported that Aβ was accumulated in drusen‐like structure in senescent neprilysin gene‐disrupted mice. The purpose of this study was to investigate the influence of Aβ on factor B, the main activator of the complement alternative pathway. The results showed that Aβ did not directly modulate factor B expression in RPE cells, but increased the production of monocyte chemoattractant protein‐1 (MCP‐1). Aβ also increased the production of IL‐1β and TNF‐α in macrophages/microglia, and exposure of RPE cells to IL‐1β and TNF‐α significantly up‐regulated factor B. Co‐cultures of RPE cells and macrophages/microglia in the presence of Aβ significantly increased the expression of factor B in RPE. These findings indicate that cytokines produced by macrophages/microglia that were recruited by MCP‐1 produced in RPE cells stimulated by Aβ up‐regulate factor B in RPE cells. Thus, a combined mechanism exists for Aβ‐induced for the activation of the complement alternative pathway in the subretinal space; cytokine‐induced up‐regulation of activator factor B and dysfunction of the inhibitor factor I by direct binding to Aβ as suggested in our earlier study. J. Cell. Physiol. 220: 119–128, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
《Autophagy》2013,9(4):563-564
Age-related macular degeneration (AMD) is the leading cause of loss of vision in developed countries. AMD is characterized by a progressive degeneration of the macula of the retina, usually bilateral, leading to a severe decrease in central vision. An early sign of AMD is the appearance of drusen, which are extracellular deposits that accumulate on Bruch’s membrane below the retinal pigment epithelium (RPE). Drusen are a risk factor for developing AMD. Some of the protein components of drusen are known, yet we know little about the processes that lead to formation of drusen. We have previously reported increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we used in vitro modeling of increased mtDNA damage. Under conditions of increased mtDNA damage, autophagy markers and exosome markers were upregulated. In addition, we found autophagy markers and exosome markers in the region of Bruch’s membrane in the retinas of old mice. Furthermore, we found that drusen in AMD donor eyes contain markers for autophagy and for exosomes. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients.  相似文献   

4.
Age-related macular degeneration (AMD) is characterized by progressive loss of central vision, which is attributed to abnormal accumulation of macular deposits called "drusen" at the interface between the basal surface of the retinal pigment epithelium (RPE) and Bruch's membrane. In the most severe cases, drusen deposits are accompanied by the growth of new blood vessels that breach the RPE layer and invade photoreceptors. In this study, we hypothesized that RPE secreted proteins are responsible for drusen formation and choroidal neovascularization. We used stable isotope labeling by amino acids in cell culture (SILAC) in combination with LC-MS/MS analysis and ZoomQuant quantification to assess differential protein secretion by RPE cell cultures prepared from human autopsy eyes of AMD donors (diagnosed by histological examinations of the macula and genotyped for the Y402H-complement factor H variant) and age-matched healthy control donors. In general, RPE cells were found to secrete a variety of extracellular matrix proteins, complement factors, and protease inhibitors that have been reported to be major constituents of drusen (hallmark deposits in AMD). Interestingly, RPE cells from AMD donors secreted 2 to 3-fold more galectin 3 binding protein, fibronectin, clusterin, matrix metalloproteinase-2 and pigment epithelium derived factor than RPE cells from age-matched healthy donors. Conversely, secreted protein acidic and rich in cysteine (SPARC) was found to be down regulated by 2-fold in AMD RPE cells versus healthy RPE cells. Ingenuity pathway analysis grouped these differentially secreted proteins into two groups; those involved in tissue development and angiogenesis and those involved in complement regulation and protein aggregation such as clusterin. Overall, these data strongly suggest that RPE cells are involved in the biogenesis of drusen and the pathology of AMD.  相似文献   

5.
Ocular drusen are extracellular deposits that form between the retinal pigmented epithelium (RPE) and Bruch's membrane. Although the presence of large and/or numerous drusen in the macula is a significant risk factor for development of age-related macular degeneration (AMD), a major cause of irreversible blindness, little is known about their origin or composition. We have expanded on our previous investigations related to drusen-associated glycoconjugates by examining lectin binding patterns after removal of terminal sialic acid residues. Strikingly, intense and distinct labeling of drusen subdomains is revealed by Arachea hypogea agglutinin (PNA) after neuraminidase treatment. PNA binding is confined to discrete domains within both hard and soft drusen. These "cores" are positioned centrally within drusen and are typically juxtaposed to Bruch's membrane. Only one core per druse is observed. PNA labeling of drusen cores does not co-localize with associated lipids and is abrogated by digestion with O-glycosidase but not N-glycosidase. The association of cores with small drusen suggests that they may participate in drusen biogenesis. (J Histochem Cytochem 47:1533-1539, 1999)  相似文献   

6.
《Cytokine》2015,75(2):335-338
Dysfunction of the retinal pigment epithelium (RPE) resulting from chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). RPE cells adjacent to drusen deposits in the AMD eye are known to contain CXCL11, a chemokine involved in inflammatory cell recruitment. We investigated the CXCL11 production by the human RPE (ARPE-19) cells under inflammatory conditions and tested its response to resveratrol, a naturally occurring anti-inflammatory antioxidant. A proinflammatory cytokine mixture consisting of IFN-γ, IL-1β and TNF-α highly increased CXCL11 mRNA expression and CXCL11 protein secretion by ARPE-19 cells. Resveratrol substantially inhibited the proinflammatory cytokines-induced CXCL11 production while partially blocking nuclear factor-κB activation. This inhibitory action of resveratrol was also observed for the cytokines-induced expression of chemokines CXCL9, CCL2 and CCL5. Our results indicate that resveratrol could potentially attenuate RPE inflammatory response implicated in the pathogenesis of AMD.  相似文献   

7.
In early age-related macular degeneration (AMD), lipid-containing deposits (drusen) accumulate in Bruch's membrane underlying the retinal pigment epithelium (RPE). Recent studies indicate that apolipoprotein E (apoE) may play a role in lipid trafficking in AMD. Compared with the apoE3 allele, the apoE4 and apoE2 alleles are associated with decreased and increased risk for AMD, respectively; drusen contain high levels of apoE, and apoE null mice develop lipid deposits in Bruch's membrane similar to those observed in AMD. Primary cultures of human RPE cells expressing the apoE3 allele were grown on Transwell culture plates. Western blotting, ELISA assay, and mass spectrometry confirmed that apoE3 was secreted into the apical and basal chambers and that secretion was upregulated by thyroid hormone, 9-cis-retinoic acid, and 22(R)-hydroxycholesterol. In addition, basally secreted apoE associated with exogenously added HDL. These results indicate that apoE secretion can be regulated by specific hormones and that apoE associates with HDL. The findings are consistent with a role for apoE in lipid trafficking through Bruch's membrane and may be relevant to AMD.  相似文献   

8.
9.
10.
Aging of retinal pigment epithelial (RPE) cells of the eye is marked by accumulations of bisretinoid fluorophores; two of the compounds within this lipofuscin mixture are A2E and all-trans-retinal dimer. These pigments are implicated in pathological mechanisms involved in some vision-threatening disorders including age-related macular degeneration (AMD). Studies have shown that bisretinoids are photosensitive compounds that undergo photooxidation and photodegradation when irradiated with short wavelength visible light. Utilizing ultra performance liquid chromatography (UPLC) with electrospray ionization mass spectrometry (ESI-MS) we demonstrate that photodegradation of A2E and all-trans-retinal dimer generates the dicarbonyls glyoxal (GO) and methylglyoxal (MG), that are known to modify proteins by advanced glycation endproduct (AGE) formation. By extracellular trapping with aminoguanidine, we established that these oxo-aldehydes are released from irradiated A2E-containing RPE cells. Enzyme-linked immunosorbant assays (ELISA) revealed that the substrate underlying A2E-containing RPE was AGE-modified after irradiation. This AGE deposition was suppressed by prior treatment of the cells with aminoguanidine. AGE-modification causes structural and functional impairment of proteins. In chronic diseases such as diabetes and atherosclerosis, MG and GO modify proteins by non-enzymatic glycation and oxidation reactions. AGE-modified proteins are also components of drusen, the sub-RPE deposits that confer increased risk of AMD onset. These results indicate that photodegraded RPE bisretinoid is likely to be a previously unknown source of MG and GO in the eye.  相似文献   

11.
12.
Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch''s membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch''s membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1) increased autophagic markers, 2) decreased lysosomal activity, 3) increased exocytotic activity and 4) release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly.  相似文献   

13.
14.
Alzheimer's disease (AD) is characterized by increased beta amyloid (Abeta) levels, extracellular Abeta deposits in senile plaques, neurofibrillary tangles, and neuronal loss. However, the physiological role of normal levels of Abeta and its parent protein, the amyloid precursor protein (APP) are unknown. Here we report that low-level transgenic (Tg) expression of the Swedish APP mutant gene (APPswe) in Fischer-344 rats results in attenuated age-dependent cognitive performance decline in 2 hippocampus-dependent learning and memory tasks compared with age-matched nontransgenic Fischer-344 controls. TgAPPswe rats exhibit mild increases in brain APP mRNA (56.8%), Abeta-42 (21%), and Abeta-40 (6.1%) peptide levels at 12 mo of age, with no extracellular Abeta deposits or senile plaques at 6, 12, and 18 mo of age, whereas 3- to 6-fold increases in Abeta levels are detected in plaque-positive human AD patients and transgenic mouse models. The data support the hypothesis that a threshold paradigm underlies Abeta-related pathology, below which APP expression may play a physiological role in specific hippocampus-dependent tasks, most likely related to its neurotrophic role.  相似文献   

15.
High‐temperature requirement protein A1 (HTRA1) is a serine protease secreted by a number of tissues including retinal pigment epithelium (RPE). A promoter variant of the gene encoding HTRA1 is part of a mutant allele that causes increased HTRA1 expression and contributed to age‐related macular degeneration (AMD) in genomewide association studies. AMD is characterized by pathological development of drusen, extracellular deposits of proteins and lipids on the basal side of RPE. The molecular pathogenesis of AMD is not well understood, and understanding dysregulation of the extracellular matrix may be key. We assess the high‐risk genotype at 10q26 by proteomic comparison of protein levels of RPE cells with and without the mutation. We show HTRA1 protein level is increased in high‐risk RPE cells along with several extracellular matrix proteins, including known HTRA1 cleavage targets LTBP‐1 and clusterin. In addition, two novel targets of HTRA1 have been identified: EFEMP1, an extracellular matrix protein mutated in Doyne honeycomb retinal dystrophy, a genetic eye disease similar to AMD, and thrombospondin 1 (TSP1), an inhibitor of angiogenesis. Our data support the role of RPE extracellular deposition with potential effects in compromised barrier to neovascularization in exudative AMD.  相似文献   

16.
The retinal pigment epithelium (RPE), as well as the neural retina, develops from the neuroectoderm and plays a key role in photoreceptor functions. Several degenerative eye diseases, e.g., macular degeneration or retinitis pigmentosa, associated with an impaired RPE function cause the loss of the photoreceptor and partial or complete blindness. Cultured RPE cells obtained from human cadaver eyes could be a valuable source for transplantation to cure retinal degenerative diseases. The paper describes RPE cell isolation, maintenance in culture, and immunohistochemical characteristics of dedifferentiated cells. It was found that RPE cells from human adults exhibit neural cell properties in vitro.  相似文献   

17.
The accumulation of damaged or postsynthetically modified proteins and dysregulation of inflammatory responses and angiogenesis in the retina/RPE are thought be etiologically related to formation of drusen and choroidal neovascularization (CNV), hallmarks of age-related macular degeneration (AMD). The ubiquitin-proteasome pathway (UPP) plays crucial roles in protein quality control, cell cycle control and signal transduction. Selective degradation of aberrant proteins by the UPP is essential for timely removal of potentially cytotoxic damaged or otherwise abnormal proteins. Proper function of the UPP is thought to be required for cellular function. In contrast, age--or stress induced--impairment the UPP or insufficient UPP capacity may contribute to the accumulation of abnormal proteins, cytotoxicity in the retina, and AMD. Crucial roles for the UPP in eye development, regulation of signal transduction, and antioxidant responses are also established. Insufficient UPP capacity in retina and RPE can result in dysregulation of signal transduction, abnormal inflammatory responses and CNV. There are also interactions between the UPP and lysosomal proteolytic pathways (LPPs). Means that modulate the proteolytic capacity are making their way into new generation of pharmacotherapies for delaying age-related diseases and may augment the benefits of adequate nutrition, with regard to diminishing the burden of AMD.  相似文献   

18.

Background

Drusen are extracellular lesions characteristic of aging and age-related maculopathy, a major retinal disease of the elderly. We determined the relative proportions of lipids and proteins in drusen capped with retinal pigment epithelium (RPE) and in RPE isolated from non-macular regions of 36 human retinas with grossly normal maculas obtained <6 hr after death.

Methodology/Principal Findings

Druse pellets were examined by light and electron microscopy. Component proteins were extracted using novel methods for preserved tissues, separated, subjected to tryptic digestion and LC-MS(MS)2 analysis using an ion trap mass spectrometer, and identified with reference to databases. Lipid classes were separated using thin layer chromatography and quantified by densitometry. Major druse components were esterified cholesterol (EC), phosphatidylcholine (PC), and protein (37.5±13.7, 36.9±12.9, and 43.0±11.5 ng/druse, respectively). Lipid-containing particles (median diameter, 77 nm) occupied 37–44% of druse volume. Major proteins include vitronectin, complement component 9, apoE, and clusterin, previously seen in drusen, and ATP synthase subunit β, scavenger receptor B2, and retinol dehydrogenase 5, previously seen in RPE. Drusen and RPE had similar protein profiles, with higher intensities and greater variability in drusen. C8, part of the complement membrane attack complex, was localized in drusen by immunofluorescence.

Conclusions/Significance

At least 40% of druse content is comprised by lipids dominated by EC and PC, 2 components that are potentially accounted for by just one pathway, the secretion of lipoproteins by RPE. Manipulating genes encoding apolipoprotein pathways would be a fruitful approach to producing drusen with high EC content in laboratory animals. Therapies that directly mitigate drusen should prepare for the substantial volume of neutral lipids. The catalog of major druse proteins is nearing completion.  相似文献   

19.
In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5(-/-) RPE but not in neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants, grapes or marigold extract containing macular pigments lutein/zeaxanthin, was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5(-/-) mice. Acute generation of HNE adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of a physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号