首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Phytoplankton plasma membrane electron transport activity was determined by monitoring the reduction of the impermeant artificial electron acceptor ferricyanide in a range of diatoms. The results revealed that constitutive plasma membrane electron transport activity of marine diatoms is high compared with chlorophytes and higher plant cells. Diatom plasma membrane electron transport activity was not significantly increased by iron limitation. This lack of induction on iron limitation indicates that diatoms have an iron acquisition strategy that is distinct from chlorophytes and the dicotyledon higher plants that exhibit marked increases in plasma membrane ferricyanide reductase activity on iron limitation. The interaction of the constitutive plasma membrane electron transport with photosynthesis was also investigated. We found that 1) ferricyanide reduction at the plasma membrane was progressively inhibited in response to increasing irradiances; 2) the presence of extracellular ferricyanide, but not the reduced couple ferrocyanide, caused a marked inhibition of carbon fixation at high irradiance; and 3) extracellular electron acceptors ferricyanide and hexachloroiridate (but not ferrocyanide) induced an immediate and reversible decrease in fluorescence yields (Fo and Fm). The extent to which extracellular electron acceptors affected CO2 fixation, Fo, and Fm was related to the level of constitutive ferricyanide reductase activity, the species with highest ferricyanide reduction rates being most sensitive. The data suggest that consumption of electrons and/or reductant at the plasma membrane by external acceptors may compete directly with CO2 fixation for electrons, alter cytosolic‐chloroplast redox poise, and/or induce a redox‐signaling cascade that alters photosynthetic metabolism.  相似文献   

2.
Sugar beet (Beta vulgaris L.) leaf plasma membrane vesicles were loaded with an NADH-generating system (or with ascorbate) and were tested spectrophotometrically for their ability to reduce external, membrane-impermeable electron acceptors. Either alcohol dehydrogenase plus NAD+ or 100 millimolar ascorbate was included in the homogenization medium, and right-side-out (apoplastic side-out) plasma membrane vesicles were subsequently prepared using two-phase partitioning. Addition of ethanol to plasma membrane vesicles loaded with the NADH-generating system led to a production of NADH inside the vesicles which could be recorded at 340 nanometers. This system was able to reduce 2,6-dichlorophenolindophenol-3′-sulfonate (DCIP-sulfonate), a strongly hydrophilic electron acceptor. The reduction of DCIP-sulfonate was stimulated severalfold by the K+ ionophore valinomycin, included to abolish membrane potential (outside negative) generated by electrogenic transmembrane electron flow. Fe3+-chelates, such as ferricyanide and ferric citrate, as well as cytochrome c, were not reduced by vesicles loaded with the NADH-generating system. In contrast, right-side-out plasma membrane vesicles loaded with ascorbate supported the reduction of both ferric citrate and DCIP-sulfonate, suggesting that ascorbate also may serve as electron donor for transplasma membrane electron transport. Differences in substrate specificity and inhibitor sensitivity indicate that the electrons from ascorbate and NADH were channelled to external acceptors via different electron transport chains. Transplasma membrane electron transport constituted only about 10% of total plasma membrane electron transport activity, but should still be sufficient to be of physiological significance in, e.g. reduction of Fe3+ to Fe2+ for uptake.  相似文献   

3.
Summary We investigated changes of thiols (GSH, GSSG, and cysteine) induced by transplasma membrane electron transport after addition of artificial electron acceptors and the influence of the thiol level on redox activity. GSH, GSSG, and cysteine content of maize (Zea mays L. cv. Golden Bantam) roots and coleoptile segments was determined by high performance liquid chromatography with a fluorescence detector. GSSG increased after treatment with 0.8 mM diamide, an SH-group oxidizer. GSH level of roots increased after treatment with diamide, while GSH levels of coleoptiles decreased. Incubation of roots with the GSH biosynthesis inhibitor buthionine-D,L-sulfoximine for 6 days lowered the glutathione level up to 80%. However, the GSH/GSSG ratio of maize roots remained constant after treatment with both effectors. The GSH/GSSG ratio and the glutathione level were changed by addition of artificial electron acceptors like hexacyanoferrate (III) or hexabromoiridate (IV), which do not permeate the plasma membrane. Hexacyanoferrate (III) reduction was inhibited up to 25% after the cellular glutathione level was lowered by treatment with diamide or buthionine-D,L-sulfoximine. Proton secretion induced by reduction of the electron acceptors was not affected by both modulators. The change in glutathione level is different for roots and coleoptiles. Our data are discussed with regard to the role of GSH in electron donation for a plasma membrane bound electron transport system.Abbreviations Buthionine-D,L-sulfoximine s-n-butyl-homocysteine sulfoximine - cys cysteine - diamide 1,1-azobis (N,N-dimethyl-formamide) - DTE dithioerythritol - EDTA ethylenediaminetetraacetic acid - GSH reduced glutathione - GSSG oxidizied glutathione, glutathione disulfide - HBI IV hexabromoiridate (IV) (K2[IrBr6]) - HCF III hexacyanoferrate (III) (K3[Fe(CN)6] - NEM N-ethylmaleimide - PM plasma membrane - Tris Tris(hydroxymethyl)aminomethane  相似文献   

4.
Roots of Plantago lanceolata L. showed an iron stress-induced increase in the rates of electron transport to the extracytoplasmatic acceptors FeEDTA and ferricyanide. No significant changes in the reduction of hexachloroiridate were observed with respect to the iron-nutritional status of the plants. The reduction activity of iron-deficient roots was inhibited by the translation inhibitor cycloheximide (CHM) and the amino acid analog p-fluorophenylalanine (FPA). In both cases, the reduction of FeEDTA and ferricyanide was affected to a different extent, providing evidence for enzyme heterogeneity. Resupply of FeEDTA to iron-deficient plants resulted in a qualitatively similar pattern of decrease in FeEDTA and ferricyanide reduction rates, although a longer time period was required for the decrease of the redox activity by iron resupply compared to the effect of inhibitors of protein synthesis.Inhibitors of the plasma membrane (PM)-bound H+-ATPase decreased the FeEDTA reduction activity of iron-deficient plants. In contrast, the reduction of ferricyanide and hexachloroiridate was not inhibited. Oxidation of ferrocyanide occurs in both iron-deficient and iron-sufficient plants at comparable rates. The reaction was decreased by the H+-ATPase inhibitor orthovanadate.The results are interpreted in terms of a simultaneous action of distinct redox systems in iron-deficient roots. The role of proton extrusion in the regulation of iron stress-induced electron transport is discussed.  相似文献   

5.
The correlation of the effects of vitamin K3 and dicumarol (ananti-vitamin K in pharmaceutical applications) on the transplasmamembrane electrical potential difference of maize roots withthe reduction of the artificial electron acceptors hexacyanoferrate(III) or hexabromoiridate (IV) and the concomitant enhancementof acidification of the incubation medium was investigated. Vitamin K3 depolarized the plasma membrane of Zea mays L. roots,while dicumarol had no significant effect on the membrane potential.Plants treated with vitamin K3 for 30 min followed by intenserinsing showed higher reduction of hexabromoiridate (IV) thanhexacyanoferrate (III), as well as a stimulated acidificationof the incubation medium. Depolarization of the plasma membraneby hexacyanoferrate (III) or hexabromoiridate (IV) decreasedafter an incubation with vitamin K3. Pretreatment with dicumarolcaused an inhibition of hexacyanoferrate (III) reduction andmedium acidification as well as depolarization by K3. The reductionof hexabromoiridate (IV) was not affected by dicumarol pretreatment.The proton secretion associated with the reduction was slightlylowered. According to our results, it seems possible that vitaminK3 acts as an electron acceptor for the plasmalemma electrontransport system of maize roots whereas dicumarol appears toinhibit electron and proton transport. Key words: Vitamin K3, dicumarol, plasmalemma redox system, Zea mays L., membrane potential  相似文献   

6.
Higher plant roots, leaf mesophyll tissue, protoplasts as well as green algae are able to reduce extra-cellular ferricyanide and ferric chelates. In roots of dicotyledonous and nongraminaceous, monocotyledonous plants, the rate of ferric reduction is increased by iron deficiency. This reduction is an obligatory prerequisite for iron uptake and is mediated by redox systems localized on the plasma membrane. Plasma membrane-bound iron reductase systems catalyze the transmembrane electron transport from cytosolic reduced pyridine nucleotides to extracellular iron compounds. Natural and synthetic ferric complexes can act as electron acceptors.This paper gives an overview about the present knowledge on iron reductase systems at the plant plasma membrane with special emphasis on biochemical characteristics and localisation.  相似文献   

7.
The quinone composition of the transplasma membrane electron transport chain of parasitic protozoa Entamoeba histolytica was investigated. Purification of quinone from the plasma membrane of E. histolytica and its subsequent structural elucidation revealed the structure of the quinone as a methylmenaquinone-7 (thermoplasmaquinone-7), a napthoquinone. Membrane bound thermoplasmaquinone-7 can be destroyed by UV irradiation with a concomitant loss of plasma membrane electron transport activity. The abilities of different quinones to restore transplasma membrane electron transport activity in UV irradiated trophozoites were compared. The lost activity was recovered completely by the addition of thermoplasmaquinone-7, but ubiquinones are unable to restore the same. These findings clearly indicate that thermoplasmaquinone-7 acts as a lipid shuttle in the plasma membrane of the parasite to mediate electron transfer between cytosolic reductant and non permeable electron acceptors. This thermoplasmaquinone-7 differs from that of the mammalian host and can provide a novel target for future rational chemotherapeutic drug designing.  相似文献   

8.
Plasma membranes isolated from three-day-old maize (Zea mays L.) roots by aqueous two-phase partitioning were used as starting material for the purification of a novel electron transport enzyme. The detergent-solubilized enzyme was purified by dyeligand affinity chromatography on Cibacron blue 3G-A-agarose. Elution was achieved with a gradient of 0 to 30 micromolar NADH. The purified protein fraction exhibited a single 27 kilodalton silver nitrate-stained band on sodium dodecyl sulfate polyacrylamide gel electrophoretograms. Staining intensity correlated with the enzyme activity profile when analyzed in affinity chromatography column fractions. The enzyme was capable of accepting electrons from NADPH or NADH to reduce either ferricyanide, juglone, duroquinone, or cytochrome c, but did not transfer electrons to ascorbate free-radical or nitrate. The high degree of purity of plasma membranes used as starting material as well as the demonstrated insensitivity to mitochondrial electron transport inhibitors confirmed the plasma membrane origin of this enzyme. The purified reductase was stimulated upon prolonged incubation with flavin mononucleotide suggesting that the enzyme may be a flavoprotein. Established effectors of plasma membrane electron transport systems had little effect on the purified enzyme, with the exception of the sulfhydryl inhibitor p-chloromercuriphenyl-sulfonate, which was a strong inhibitor of ferricyanide reducing activity.  相似文献   

9.
Summary Intact plants can reduce external oxidants by an appearingly trans-membrane electron transport. In vivo an increase in net medium acidification accompanies the reduction of the apoplastic substrate. Up to now, several NAD(P)H dehydrogenases,b-type cytochromes, and a phylloquinone have been identified and partially purified from plant plasma membranes. The occurrence of a quinone in the plasma membrane of maize roots supports the hypothetical model of a proton-transferring redox system, i.e., an electron transport chain with a quinone as mobile electron and proton carrier. In the present study the trans-membrane electron transport system of intact maize (Zea mays L.) roots was investigated. Flow-through and ionostat systems have been used to estimate the electron and proton transport activity of this material. Application of 4,4,4-trifluoro-1-(2-thienyl)-butane-1,3-dione (thenoyltrifluoroacetone) inhibited the reduction of ferricyanide in the incubation solution of intact maize roots up to 70%. This inhibition could not be washed off by rinsing the roots with fresh incubation medium. The acidification of the medium induced after ferricyanide application was inhibited to about 62%. The effects of thenoyltrifluoroacetone on proton fluxes in the absence of ferricyanide have been characterized in a pH-stat system. The net medium acidification by maize roots was inhibited up to 75% by thenoyltrifluoroacetone in the absence of ferricyanide, while dicumarol inhibited net acidification completely. The inhibition of H+-ATPase activity was estimated with plasma membrane vesicles isolated by phase partitioning and treated with 0.05% (w/v) Brij 58. ATP-dependent proton gradients and Pi release were measured after preincubation with the effectors. The proton pumping activity by those plasma membrane vesicles was inhibited by dicumarol (53.6%) and thenoyltrifluoroacetone (77.8%), while the release of Pi was unaffected by both inhibitors.Abbreviations Brij 58 polyoxyethylene 20-cetyl ether - duroquinone tetramethyl-p-benzoquinone - HCF III hexacyanoferrate III - TTFA thenoyltrifluoroacetone - vitamin K1 2-methyl-3-phytyl-1,4-naphthoquinone - vitamin K3 2-methyl-1,4-naphthoquinone  相似文献   

10.
Entamoeba histolytica, an amitochondriate parasitic protist, was demonstrated to be capable of reducing the oxidized form of α-lipoic acid, a non permeable electron acceptor outside the plasma membrane. This transmembrane reduction of non permeable electron acceptors with redox potentials ranging from −290 mV to +360 mV takes place at neutral pH. The transmembrane reduction of non permeable electron acceptors was not inhibited by mitochondrial electron transport inhibitors such as antimycin A, rotenone, cyanide and azide. However, a clear inhibition with complex III inhibitor, 2-(n-heptyl)-4-hydroxyquinoline-N-oxide; modifiers of sulphydryl groups and inhibitors of glycolysis was revealed. The iron-sulphur centre inhibitor thenoyltrifluoroacetone failed to inhibit the reduction of non permeable electron acceptors whereas capsaicin, an inhibitor of energy coupling NADH oxidase, showed substantial inhibition. p-trifluromethoxychlorophenylhydrazone, a protonophore uncoupler, resulted in the stimulation of α-lipoic acid reduction but inhibition in oxygen uptake. Mitochondrial electron transport inhibitors substantially inhibited the oxygen uptake in E. histolytica. Transmembrane reduction of α-lipoic acid was strongly stimulated by anaerobiosis and anaerobic stimulation was inhibited by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide. Transmembrane redox system of E. histolytica was also found to be sensitive to UV irradiation. All these findings clearly demonstrate the existence of transplasma membrane electron transport system in E. histolytica and possible involvment of a naphthoquinone coenzyme in transmembrane redox of E. histolytica which is different from that of mammalian host and therefore can provide a novel target for future rational chemotherapeutic drug designing.  相似文献   

11.
Cytochemical techniques employing lead-precipitation of enzymically released inorganic phosphate have been widely used in attempts to localize the plasma membrane proton pump (H+-ATPase) in electron micrographs. Using Avena sativa root tissue we have performed a side-by-side comparison of ATPase activity observed in electron micrographs with that observed in in vitro assays using ATPases found in the soluble and plasma membrane fractions of homogenates. Cytochemical analysis of oat roots, which had been fixed in glutaraldehyde in order to preserve subcellular structures, identifies an ATPase located at or near the plasma membrane. However, the substrate specificity and inhibitor sensitivity of the in situ localized ATPase appear identical to those of an in vitro ATPase activity found in the soluble fraction, and are completely unlike those of the plasma membrane proton pump. Further studies demonstrated that the plasma membrane H+-ATPase is particularly sensitive to inactivation by the fixatives glutaraldehyde and formaldehyde and by lead. In contrast, the predominant soluble ATPase activity in oat root homogenates is less sensitive to fixation and is completely insensitive to lead. Based on these results, we propose a set of criteria for evaluating whether a cytochemically localized ATPase activity is, in fact, due to the plasma membrane proton pump.  相似文献   

12.
A novel electrochemical technique was developed to enable high‐resolution measurements of trans‐plasma membrane reductase activity in vivo in growing plant tissue and single cells. Carbon fibre microelectrodes (CFMEs) with a tip diameter of 5 µm were used for electrochemical mapping of the reduction of the external impermeant electron acceptor ferricyanide along the root tip surface of 4‐d‐old maize seedlings. Ferricyanide reduction was detected in all locations along the first 12 mm of the growing root apex. However, a distinct peak in activity was detected at the proximal end of the elongation zone (1·5–4·5 mm from the apex), where reductase activity was three times greater than in more apical or distal regions. The inhibition of the ferricyanide reduction at all locations along the growing apex, by the vitamin K antagonists warfarin and dicumarol, supports previous data showing that electron transfer by the constitutive trans‐plasma membrane reductase is achieved via a quinone shuttle. We demonstrate that in addition to their utility in whole‐tissue/‐organ studies, CFMEs are sensitive enough to monitor trans‐plasma membrane electron transport in single cells.  相似文献   

13.
Leishmania donovani promastigotes are capable of reducing certain electron acceptors with redox potential at pH 7 down to -125 mV; outside the plasma membrane promastigotes can reduce ferricyanide. Ferricyanide has been used as an artificial electron acceptor probe for studying the mechanism of transplasma membrane electron transport. Transmembrane ferricyanide reduction by L. donovani promastigotes was not inhibited by such mitochondrial inhibitors as antimycin A or cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Leishmania appears to involve a plasma membrane electron transport chain dissimilar to that of hepatocyte cells. As with other cells, transmembrane electron transport is associated with proton release, which may be involved in internal pH regulation. The Leishmania transmembrane redox system differs from that of mammalian cells in being 4-fold less sensitive to chloroquine and 12-fold more sensitive to niclosamide. Sensitivities to these drugs suggest that transplasma membrane electron transport and associated proton pumping may be targets for the drugs used against leishmaniasis.  相似文献   

14.
Phosphate uptake by the phosphate-accumulating denitrifier Pseudomonas sp. JR12 was examined with different combinations of electron and carbon donors and electron acceptors. Phosphate uptake in acetate-supplemented cells took place with either oxygen or nitrate but did not take place when nitrite served as the final electron acceptor. Furthermore, nitrite reduction rates by this denitrifier were shown to be significantly reduced in the presence of phosphate. Phosphate uptake assays in the presence of the H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), in the presence of the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or with osmotic shock-treated cells indicated that phosphate transport over the cytoplasmic membrane of this bacterium was mediated by primary and secondary transport systems. By examining the redox transitions of whole cells at 553 nm we found that phosphate addition caused a significant oxidation of a c-type cytochrome. Based on these findings, we propose that this c-type cytochrome serves as an intermediate in the electron transfer to both nitrite reductase and the site responsible for active phosphate transport. In previous studies with this bacterium we found that the oxidation state of this c-type cytochrome was significantly higher in acetate-supplemented, nitrite-respiring cells (incapable of phosphate uptake) than in phosphate-accumulating cells incubated with different combinations of electron donors and acceptors. Based on the latter finding and results obtained in the present study it is suggested that phosphate uptake in this bacterium is subjected to a redox control of the active phosphate transport site. By means of this mechanism an explanation is provided for the observed absence of phosphate uptake in the presence of nitrite and inhibition of nitrite reduction by phosphate in this organism. The implications of these findings regarding denitrifying, phosphate removal wastewater plants is discussed.  相似文献   

15.
Brauer D  Hsu AF  Tu SI 《Plant physiology》1988,87(3):598-602
Proton transport catalyzed by the nitrate-insensitive, vanadate-sensitive H+-ATPase in microsomes from maize (Zea mays L.) roots washed with 0.25 molar KI decreased as a function of time at 0 to 4°C. The rate of proton transport was approximately one-half of that by freshly isolated microsomes after 6 to 18 hours of cold storage. The decrease in proton transport coincided with losses in membrane phosphatidylcholine and was not associated with a change in vanadate-sensitive ATP hydrolysis. A technique based on a protocol developed for the reconstitution of Neurospora crassa plasma membrane H+-ATPase (DS Perlin, K Kasamo, RJ Brooker, CW Slayman 1984 J Biol Chem 259: 7884-7892) was employed to restore proton transport activity to maize microsomes. These results indicated that the decline in proton transport by maize root membranes during cold storage was not due to degradation of the protein moiety of the H+-ATPase, but was due to the loss of phospholipids.  相似文献   

16.
The effect of iron substrates and growth conditions on in vitro dissimilatory iron reduction by membrane fractions of Shewanella oneidensis MR-1 was characterized. Membrane fractions were separated by sucrose density gradients from cultures grown with O2, fumarate, and aqueous ferric citrate as the terminal electron acceptor. Marker enzyme assays and two-dimensional gel electrophoresis demonstrated the high degree of separation between the outer and cytosolic membrane. Protein expression pattern was similar between chelated iron- and fumarate-grown cultures, but dissimilar for oxygen-grown cultures. Formate-dependent ferric reductase activity was assayed with citrate-Fe3+, ferrozine-Fe3+, and insoluble goethite as electron acceptors. No activity was detected in aerobic cultures. For fumarate and chelated iron-grown cells, the specific activity for the reduction of soluble iron was highest in the cytosolic membrane. The reduction of ferrozine-Fe3+ was greater than the reduction of citrate-Fe3+. With goethite, the specific activity was highest in the total membrane fraction (containing both cytosolic and outer membrane), indicating participation of the outer membrane components in electron flow. Heme protein content and specific activity for iron reduction was highest with chelated iron-grown cultures with no heme proteins in aerobically grown membrane fractions. Western blots showed that CymA, a heme protein involved in iron reduction, expression was also higher in iron-grown cultures compared to fumarate- or aerobic-grown cultures. To study these processes, it is important to use cultures grown with chelated Fe3+ as the electron acceptor and to assay ferric reductase activity using goethite as the substrate.  相似文献   

17.
Gniazdowska  A.  Rychter  A. M. 《Plant and Soil》2000,226(1):79-85
Bean (Phaseolus vulgaris L.) plants were cultured for 19 d on complete or on phosphate deficient culture media. Low inorganic phosphate concentration in the roots decreased ATP level and nitrate uptake rate. The mechanisms which may control nitrate uptake rate during phosphate deficiency were examined. Plasma membrane enriched fractions from phosphate sufficient and phosphate deficient plants were isolated and compared. The decrease in total phospholipid content was observed in plasma membranes from phosphate deficient roots, but phospholipid composition was similar. No changes in ATPase and proton pumping activities measured in isolated plasma membrane of phosphate sufficient and phosphate deficient bean roots were noted. The electron microscope observations carried out on cortical meristematic cells of the roots showed that active ATPases were found in plasma membrane of both phosphate sufficient and phosphate deficient plants. The decrease in inorganic phosphate concentration in roots led to increased nitrate accumulation in roots, accompanied by a corresponding alterations in NO3 distribution between shoots and roots. Nitrate reductase activity in roots of phosphate deficient plants estimated in vivo and in vitro was reduced to 50–60% of the control. The increased NO3 concentration in root tissue may be explained by decreased NR activity and lower transport of nitrate from roots to shoots. Therefore, the reduction of nitrate uptake during phosphate starvation is mainly a consequence of nitrate accumulation in the roots.  相似文献   

18.
The role of plasma membrane redox activity in light effects in plants   总被引:1,自引:0,他引:1  
Stimulations by light of electron transport at the plasma membrane make it possible that redox activity is involved in light-induced signal transduction chains. This is especially true in cases where component(s) of the chain are also located at the plasma membrane. Photosynthetic reactions stimulate transplasma membrane redox activity of mesophyll cells. Activity is measured as a reduction of the nonpermeating redox probe, ferricyanide. The stimulation is due to production of a cytosolic electron donor from a substance(s) transported from the chloroplast. It is unknown whether the stimulation of redox activity is a requirement for other photosynthetically stimulated processes at the plasma membrane, but a reduced intermediate may regulate proton excretion by guard cells. Blue light induces an absorbance change (LIAC) at the plasma membrane whose difference spectrum resembles certainb-type cytochromes. This transport of electrons may be due to absorption of light by a flavoprotein. The LIAC has been implicated as an early step in certain blue light-mediated morphogenic events. Unrelated to photosynthesis, blue light also stimulates electron transport at the plasma membrane to ferricyanide. The relationship between LIAC and transmembrane electron flow has not yet been determined, but blue light-regulated proton excretion and/or growth may depend on this electron flow. No conclusions can be drawn regarding any role for phytochrome because of a paucity of information concerning the effects of red light on redox activity at the plasma membrane.  相似文献   

19.
Ammineruthenium(III) complexes have been found to act as electron acceptors for the transplasmalemma electron transport system of animal cells. The active complexes hexaammineruthenium(III), pyridine pentaammineruthenium(III), and chloropentaammineruthenium(III) range in redox potential (E 0) from 305 to –42 mV. These compounds also act as electron acceptors for the NADH dehydrogenase of isolated plasma membranes. Stimulation of HeLa cell growth, in the absence of calf serum, by these compounds provides evidence that growth stimulation by the transplasma membrane electron transport system is not entirely based on reduction and uptake of iron.  相似文献   

20.
ATPase activity, ATP-dependent H+ transport and the amount of antigenic tomato plasma membrane H+-APTase have been analysed in membrane vesicles isolated from Glomus mosseae- or Glomus intraradices-colonized roots and from non-mycorrhizal tomato roots. Microsomal protein content was higher in mycorrhizal than in control roots. The specific activity of the plasma membrane H+-ATPase was not affected by mycorrhizal colonization, although this activity increased in membranes isolated from mycorrhizal roots when expressed on a fresh weight basis. Western blot analysis of microsomal proteins using antibodies raised against the Arabidopsis thaliana plasma membrane H+ - ATPase showed that mycorrhizal colonization did not change the relative amount of tomato plasma membrane ATPase in the microsomes. However, on a fresh weight basis, there was a greater amount of this protein in roots of mycorrhizal plants. In addition, mycorrhizal membranes showed a higher specific activity of the vanadate-sensitive ATP-dependant H+ transport than membranes isolated from control roots. These results suggest that mycorrhiza might regulate the plasma membrane ATPase by increasing the coupling efficiency between H+ transport and ATP hydrolysis. The observed effects of mycorrhizal colonization on plasma membrane H+-ATPase were independent of the AM fungal species colonizing the root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号