首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation   总被引:30,自引:0,他引:30  
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed and relocated in the environment as a result of the incomplete combustion of organic matter. Many PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms as well as to higher systems including humans. Although various physicochemical methods have been used to remove these compounds from our environment, they have many limitations. Xenobiotic-degrading microorganisms have tremendous potential for bioremediation but new modifications are required to make such microorganisms effective and efficient in removing these compounds, which were once thought to be recalcitrant. Metabolic engineering might help to improve the efficiency of degradation of toxic compounds by microorganisms. However, efficiency of naturally occurring microorganisms for field bioremediation could be significantly improved by optimizing certain factors such as bioavailability, adsorption and mass transfer. Chemotaxis could also have an important role in enhancing biodegradation of pollutants. Here, we discuss the problems of PAH pollution and PAH degradation, and relevant bioremediation efforts.  相似文献   

3.
Tetralin is toxic to bacterial cells at concentrations below 100 mumol/liter. To assess the inhibitory action of tetralin on bacterial membranes, a membrane model system, consisting of proteoliposomes in which beef heart cytochrome c oxidase was reconstituted as the proton motive force-generating mechanism, and several gram-positive and gram-negative bacteria were studied. Because of its hydrophobicity, tetralin partitioned into lipid membranes preferentially (lipid/buffer partition coefficient of tetralin is approximately 1,100). The excessive accumulation of tetralin caused expansion of the membrane and impairment of different membrane functions. Studies with proteoliposomes and intact cells indicated that tetralin makes the membrane permeable for ions (protons) and inhibits the respiratory enzymes, which leads to a partial dissipation of the pH gradient and electrical potential. The effect of tetralin on the components of the proton motive force as well as disruption of protein-lipid interaction(s) could lead to impairment of various metabolic functions and to low growth rates. The data offer an explanation for the difficulty in isolating and cultivating microorganisms in media containing tetralin or other lipophilic compounds.  相似文献   

4.
Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are introduced is possible. Anaerobic bioremediation is an attractive technology as these compounds are often present in the anoxic zones of the environment. The bottleneck in the application of anaerobic techniques is the lack of knowledge about the anaerobic biodegradation of benzene and the bacteria involved in anaerobic benzene degradation. Here, we review the existing knowledge on the degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria, in particular the physiology and application, including results on the (per)chlorate stimulated degradation of these compounds, which is an interesting new alternative option for bioremediation.  相似文献   

5.
Biodegradation of halogenated organic compounds.   总被引:30,自引:2,他引:30       下载免费PDF全文
In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant compounds. Recent developments in designing recombinant microorganisms and hybrid metabolic pathways are discussed.  相似文献   

6.

Background  

Sudan red compounds are hydrophobic azo dyes, still used as food additives in some countries. However, they have been shown to be unsafe, causing tumors in the liver and urinary bladder in rats. They have been classified as category 3 human carcinogens by the International Agency for Research on Cancer. A number of hypotheses that could explain the mechanism of carcinogenesis have been proposed for dyes similar to the Sudan red compounds. Traditionally, investigations of the membrane toxicity of organic substances have focused on hydrocarbons, e.g. polycyclic aromatic hydrocarbons (PAHs), and DDT. In contrast to hydrocarbons, Sudan red compounds contain azo and hydroxy groups, which can form hydrogen bonds with the polar head groups of membrane phospholipids. Thus, entry may be impeded. They could have different toxicities from other lipophilic hydrocarbons. The available data show that because these compounds are lipophilic, interactions with hydrophobic parts of the cell are important for their toxicity. Lipophilic compounds accumulate in the membrane, causing expansion of the membrane surface area, inhibition of primary ion pumps and increased proton permeability.  相似文献   

7.
8.
Microbial degradation of tannins – A current perspective   总被引:26,自引:0,他引:26  
Tannins are water-soluble polyphenolic compounds having wide prevalence in plants. Hydrolysable and condensed tannins are the two major classes of tannins. These compounds have a range of effects on various organisms – from toxic effects on animals to growth inhibition of microorganisms. Some microbes are, however, resistant to tannins, and have developed various mechanisms and pathways for tannin degradation in their natural milieu. The microbial degradation of condensed tannins is, however, less than hydrolysable tannins in both aerobic and anaerobic environments. A number of microbes have also been isolated from the gastrointestinal tract of animals, which have the ability to break tannin-protein complexes and degrade tannins, especially hydrolysable tannins. Tannase, a key enzyme in the degradation of hydrolysable tannins, is present in a diverse group of microorganisms, including rumen bacteria. This enzyme is being increasingly used in a number of processes. Presently, there is a need for increased understanding of the biodegradation of condensed tannins, particularly in ruminants.  相似文献   

9.
Degradation of nitroaromatic compounds by microorganisms   总被引:14,自引:0,他引:14  
Nitroaromatic compounds are abundantly present in nature, but are in most cases highly toxic to living organisms. Several microorganisms, however, are capable of mineralizing or converting these compounds. Until now four pathways for the complete degradation of nitroaromatics have been described, which start with either the oxygenolytic or reductive removal of the nitro group from the aromatic ring or with this removal by means of replacement reactions. Besides these conversions many organisms are able to reduce nitroaromatics. The degradation of nitroaromatic compounds does not only occur in pure cultures but also in situ, for example in soil, water and sewage. However, several problems are associated with the application of microorganisms in the bioremediation of contaminated sites, as nitroaromatics or their conversion products may chemically interact with soil particles and cells. Besides the possibilities of applying microorganisms in the cleaning of sites contaminated with nitroaromatics, the use of microorganisms or enzymes in the biocatalytic production of industrially valuable products from nitroaromatics is also discussed.  相似文献   

10.
Metabolically engineered microorganisms may have tremendous potential in removing toxic compounds from nature. In general, microorganisms prefer to utilize simpler carbon sources over toxic compounds when both are present in an environment and, therefore, the presence of simpler carbon sources may greatly reduce the efficiency of a microorganism towards toxic compounds. If a microorganism is prevented from utilizing simpler carbon sources, thereby making it totally dependent upon the toxic compounds, it should increase the specificity for and efficiency of degradation of the toxic compounds in the presence of other, simpler carbon sources. To test this hypothesis, the efficiency of naphthalene and salicylate degradation in the presence of glucose by a recombinant Pseudomonas putida strain mutated in glucose metabolism was determined and compared to the non-mutated strain. Results obtained indicate that the impairment of glucose metabolism leads to better degradation of naphthalene and salicylate in the presence of glucose.  相似文献   

11.
The ability of microorganisms to use polyethylene as a carbon source has only been recently established. This result has significance both from an environmental point of view, due to the accumulation of millions of tons of waste plastics every year, but also regarding the conservation of integrity for infrastructures incorporating this plastic. A number of microorganisms with the ability to grow on polyethylene have been isolated. The effects of these microorganisms on the physiochemical properties of this polymer have been described; these include changes in crystallinity, molecular weight, topography of samples and the functional groups found on the surface. Although the bio-degradation and bio-deterioration of polyethylene has been demonstrated by several researchers, the enzymes involved and mechanisms associated with these phenomena are still unclear. Nevertheless, it is recognized that both enzymatic and abiotic factors (such UV light) can mediate the initial oxidation of polyethylene chains, and given the chemical similarity between polyethylene and olefins it has been suggested that the metabolic pathways for degradation of hydrocarbons can be used once the size of polyethylene molecules decrease to an acceptable range for enzyme action (typically from 10 to 50 carbons). The long-range structure and morphology of polyethylene have shown important roles, with amorphous regions being more prone to microbial attack than crystalline ones. This review focuses on the recent hypotheses and experimental findings regarding the biodegradation of polyethylene.  相似文献   

12.
Recently, the impact of petroleum pollution on marine plankton has been complemented by a great concern. This review summarizes the reports about toxic effects of oil water accommodated fraction (WAF) on marine phytoplankton, zooplankton and early life stage of animal. For the oil WAF, toxicants are mainly composed of the aromatic hydrocarbons, such as the benzene hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) with 2–5 rings. The oil WAF, especially the PAHs, can be accumulated in plankton due to their great lipophilic abilities, and thus elicites various deleterious effects. Toxicological tests show that marine plankton is very sensitive to the petroleum WAF, as the order of median effective/lethal concentration is merely μg/L or mg/L. There are species and developmental stages differences of plankton tolerance to petroleum WAF, and the toxicity of different oil WAF is various. Generally, its toxicity enhances with increasing carbonic chain length and benzene ring number. Many studies on the acute and sub-acute toxic effects of oil WAF have been done, however few researches on its chronic toxic effects has been carried out till now. Besides, most reports focused on the levels from molecule to individual, though very little work of petroleum toxic effects has ever been performed on the marine plankton population or community levels. Therefore, it is necessary to continue these studies in future.  相似文献   

13.
Mechanisms of temperature adaptation in poikilotherms   总被引:4,自引:0,他引:4  
Guschina IA  Harwood JL 《FEBS letters》2006,580(23):5477-5483
For good function, membrane lipids have to be arranged appropriately and be in the correct physical state. In poikilotherms, exposure to cold stress or heat shock can alter membrane properties such that, unless they are corrected quickly, damage and, possibly, death can result. Low temperature stress is countered by modifying membrane lipids such that their average transition temperature is lowered. There are various ways in which this can be achieved but an increase in fatty acid unsaturation is the most common. For heat shock, various changes in lipids have been noted and some defensive strategies involving heat shock proteins noted. In this short review, we will describe recent results where adaptive lipid changes, as a result of temperature stress, have been found. Mechanisms for bringing about such alterations are discussed, together with the contrasting data for different organisms.  相似文献   

14.
The effects of. a variety of lipophilic compounds on the young stage (schistosomulum) and adult Schistosoma mansoni have been studied by measuring the release of51Cr and125I-labelled wheat-germ agglutinin from labelled parasites. The compounds could be classified into three groups, one of which described reagents which affected only the schistosomulum. It is concluded that during development, changes occur in the organization of the lipid phase of the parasite membrane  相似文献   

15.
Biological cyanide destruction mediated by microorganisms   总被引:6,自引:0,他引:6  
Many microorganisms have an inherent capacity to degrade the toxic organic compounds that enter the environment as a result of pollution and natural activities. Significant degradation of these compounds may take many years and it is frequently necessary to consider methods that can accelerate this process. There have been several demonstrations of enhanced biological degradation of toxic wastes, both in the laboratory and under field conditions. The prospects for enhanced biological cyanide degradation are reviewed. Compared with bench-scale processes, there are very few reports of field-scale processes for cyanide bioremediation. The implementation of such field-scale degradation requires inputs from biology, hydrology, geology, chemistry and civil engineering. A conceptual framework is emerging that can be adapted to develop new processes for bioremediation of toxic organic wastes. In terms of cyanide biodegradation, this framework incorporates identification of microbes, determination of the optimal conditions for degradation, establishment of the metabolic pathways involved in cyanide degradation, identification and localization of the genes involved, identification of suitable microbial strains for practical application and development of practical engineering processes. The present review addresses the progress that has been made in each of these aspects of cyanide biodegradation. It also examines the existing field applications of biological cyanide degradation and makes recommendations for future research.Dr S.K. Dubey is and Dr D.S. Holmes was with the Department of Biology, Clarkson University, Potsdam, NY 13699, USA. Dr D.S. Holmes is now affiliated with Centro de Estudios Cientifigos de Santiago, Av. Presedente Errazuriz 3132, Casilla 16443, Santiago 9, Chile.  相似文献   

16.
Outer membrane proteins are indispensable components of bacterial cells and participate in several relevant functions of the microorganisms. Changes in the outer membrane protein composition might alter antibiotic sensitivity and pathogenicity. Furthermore, the effects of various factors on outer membrane protein expression, such as antibiotic treatment, mutation, changes in the environment, lipopolysaccharide modification and biofilm formation, have been analyzed. Traditionally, the outer membrane protein profile determination was performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Converting this technique to capillary electrophoresis format resulted in faster separation, lower sample consumption and automation. Coupling capillary electrophoresis with mass spectrometry enabled the fast identification of bacterial proteins, while immediate quantitative analysis permitted the determination of up- and downregulation of certain outer membrane proteins. Adapting capillary electrophoresis to microchip format ensured a further ten- to 100-fold decrease in separation time. Application of different separation techniques combined with various sensitive detector systems has ensured further opportunities in the field of high-throughput bacterial protein analysis. This review provides an overview using selected examples of outer membrane proteins and the development and application of the electrophoretic and microchip technologies for the analysis of these proteins.  相似文献   

17.
18.
Mechanisms of resistance to antibiotics   总被引:1,自引:0,他引:1  
Microbial resistance to antibiotics is manifested by changes in antibiotic permeability, alteration of target molecules, enzymatic degradation of the antibiotics, and efflux of antimicrobials from the cytosol. Bacteria and other microorganisms use all of these mechanisms to evade the toxic effects of antibiotics. Recent research on the molecular aspects of these mechanisms, often informed by atomic resolution structures of proteins, enzymes and nucleic acids involved in these processes, has deepened our understanding of antibiotic action and resistance and, in several cases, spurred the development of strategies to overcome resistance in vitro and in vivo.  相似文献   

19.
Disfunctioning of human mitochondria is found in a rapidly increasing number of patients. The mitochondrial system for energy transduction is very vulnerable to damage by genetic and environmental factors. A primary mitochondrial disease is caused by a genetic defect in a mitochondrial enzyme or translocator. More than 60 mitochondrial enzyme deficiencies have been reported. Secondary mitochondrial defects are caused by lack of compounds to enable a proper mitochondrial function or by inhibition of that function. This may result from malnutrition, circulatory or hormonal disturbances, viral infection, poisoning, or an extramitochondrial error of metabolism. Once mitochondrial ATP synthesis decreases, secondary mitochondrial lesions may be generated further, due to changes in synthesis and degradation of mitochondrial phospholipids and proteins, to mitochondrial antibody formation following massive degradation, to accumulation of toxic products as excess acyl-CoA, to the depletion of Krebs cycle intermediates, and to the increase of free radical formation and lipid peroxidation.  相似文献   

20.
The evolution of microbial catabolic enzymes cannot keep pace with the rapid introduction of novel compounds into the environment. These new synthetic compounds that are slowly biodegradable or non-biodegradable are known as recalcitrant compounds, and range from simple halogenated hydrocarbons to complex polymers. Recalcitrant compounds can be made biodegradable by developing microorganisms capable of degrading the compound and by treating the compound to make it more conducive to mirobial attack. Many factors contribute to recalcitrance. The organism may lack the necessary genetic information. The organism can acquire this information by plasmid transfer or de novo enzyme synthesis. Plasmids have been characterized that degrade or transform antibiotics, pesticides, and hydrocarbons. By the use of chemostat techniques or chemical mutagens, organisms have been shown to synthesize de novo enzymes. The compound may be too large to enter the cell, or a transport system may not exist to transport it across the membrane. The compound may be insoluble, either as a solid or a liquid, and the microorganism may lack the proper nutrients. Recalcitrant compounds can be oxygenated prior to degradation, in the presence of a readily assimilable carbon source. In the absence of the assimilable carbon source, the recalcitrant compound is not degraded, or only very slowly. Examples of such co-oxidative metabolism are alkane and lignin degradation. Polymers, particularly synthetic ones, are prime examples of difficult-to-degrade compounds. The initial rate of polymer degradation follows a Freundlich or modified Langmuir isotherm rather than Michaelis-Menten kinetics. Microorganisms can irreversibly bind to solid surfaces by various methods. Soil microorganisms have been found to degrade styrene monomers and dimers. Polystyrene has been shown to be biodegradable by 14CO2 evolution but at a very slow rate. In car tyres, styrene as a copolymer of butadiene is co-metabolized in the presence of other assimilable carbon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号