首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Usher syndrome is a heterogeneous group of autosomal recessive disorders that combines variably severe congenital neurosensory hearing impairment with progressive night-blindness and visual loss similar to that in retinitis pigmentosa. Usher syndrome type I is distinguished by profound congenital (preverbal) deafness and retinal disease with onset in the first decade of life. Usher syndrome type II is characterized by partial hearing impairment and retinal dystrophy that occurs in late adolescence or early adulthood. The chromosomal assignment and the regional localization of the genetic mutation(s) causing the Usher syndromes are unknown. We analyzed a panel of polymorphic genomic markers for linkage to the disease gene among six families with Usher syndrome type I and 22 families with Usher syndrome type II. Significant linkage was established between Usher syndrome type II and the DNA marker locus THH33 (D1S81), which maps to chromosome 1q. The most likely location of the disease gene is at a map distance of 9 cM from THH33 (lod score 6.5). The same marker failed to show linkage in families segregating an allele for Usher syndrome type I. These data confirm the provisional assignment of the locus for Usher syndrome type II to the distal end of chromosome 1q and demonstrate that the clinical heterogeneity between Usher types I and II is caused by mutational events at different genetic loci. Regional localization has the potential to improve carrier detection and to provide antenatal diagnosis in families at risk for the disease.  相似文献   

2.
Exclusion of Usher syndrome gene from much of chromosome 4   总被引:1,自引:0,他引:1  
Usher syndrome is an autosomal recessive disease characterized by dual sensory impairments; affected individuals are born with a sensorineural hearing loss and ultimately lose their sight as retinitis pigmentosa develops. Conventional protein markers previously tested in a Louisiana Acadian kindred suggested tentative linkage to vitamin D-binding protein on chromosome 4. DNA linkage studies do not confirm this linkage relationship and exclude much of chromosome 4 as the site of the Usher syndrome gene in these families.  相似文献   

3.
Usher syndrome type I is an autosomal recessive disorder marked by hearing loss, vestibular areflexia, and retinitis pigmentosa. Six Usher I genetic subtypes at loci USH1A-USH1F have been reported. The MYO7A gene is responsible for USH1B, the most common subtype. In our analysis, 151 families with Usher I were screened by linkage and mutation analysis. MYO7A mutations were identified in 64 families with Usher I. Of the remaining 87 families, who were negative for MYO7A mutations, 54 were informative for linkage analysis and were screened with the remaining USH1 loci markers. Results of linkage and heterogeneity analyses showed no evidence of Usher types Ia or Ie. However, one maximum LOD score was observed lying within the USH1D region. Two lesser peak LOD scores were observed outside and between the putative regions for USH1D and USH1F, on chromosome 10. A HOMOG chi(2)((1)) plot shows evidence of heterogeneity across the USH1D, USH1F, and intervening regions. These results provide conclusive evidence that the second-most-common subtype of Usher I is due to genes on chromosome 10, and they confirm the existence of one Usher I gene in the previously defined USH1D region, as well as providing evidence for a second, and possibly a third, gene in the 10p/q region.  相似文献   

4.
Localization of Usher syndrome type II to chromosome 1q   总被引:17,自引:0,他引:17  
Usher syndrome is characterized by congenital hearing loss, progressive visual impairment due to retinitis pigmentosa, and variable vestibular problems. The two subtypes of Usher syndrome, types I and II, can be distinguished by the degree of hearing loss and by the presence or absence of vestibular dysfunction. Type I is characterized by a profound hearing loss and totally absent vestibular responses, while type II has a milder hearing loss and normal vestibular function. Fifty-five members of eight type II Usher syndrome families were typed for three DNA markers in the distal region of chromosome 1q: D1S65 (pEKH7.4), REN (pHRnES1.9), and D1S81 (pTHH33). Statistically significant linkage was observed for Usher syndrome type II with a maximum multipoint lod score of 6.37 at the position of the marker THH33, thus localizing the Usher type II (USH2) gene to 1q. Nine families with type I Usher syndrome failed to show linkage to the same three markers. The statistical test for heterogeneity of linkage between Usher syndrome types I and II was highly significant, thus demonstrating that they are due to mutations at different genetic loci.  相似文献   

5.
Usher Syndrome (US), an autosomal recessive disease, is characterized by retinitis pigmentosa (RP), vestibular dysfunction, and congenital sensorineural deafness. There are three recognized clinical types of the disorder. In order to improve genetic counseling for affected families, we conducted linkage analysis and DNA sequencing in 10 Colombian families with confirmed diagnosis of US (4 type I and 6 type II). Seventy-five percent of the US1 families showed linkage to locus USH1B, while the remaining 25% showed linkage to loci USH1B and USH1C. Among families showing linkage to USH1B we found two different mutations in the MYO7A gene: IVS42-26insTTGAG in exon 43 (heterozygous state) and R634X (CGA-TGA) in exon 16 (homozygous state). All six US2 families showed linkage to locus USH2A. Of them, 4 had c.2299delG mutation (1 homozygote state and 3 heterozygous); in the remaining 2 we did not identify any pathologic DNA variant. USH2A individuals with a 2299delG mutation presented a typical and homogeneous retinal phenotype with bilateral severe hearing loss, except for one individual with a heterozygous 2299delG mutation, whose hearing loss was asymmetric, but more profound than in the other cases. The study of these families adds to the genotype-phenotype characterization of the different types and subtypes of US and facilitates genetic counseling in these families. We would like to emphasize the need to perform DNA studies as a prerequisite for genetic counseling in affected families.  相似文献   

6.
Usher syndrome (USH) is an autosomal-recessive disease characterized by neurosensory deafness and progressive retinitis pigmentosa. So far, three clinical types of Usher syndrome have been defined, and are caused by defects at more than eight loci. We report the linkage analysis of seven Lebanese families with Usher syndrome, two with type I (USH1) and five with type II (USH2). We demonstrate that one family is linked to the USH1C locus, a rare form of USH1 only reported in the French Acadian population. Linkage analysis of the five USH2 families with recently mapped loci allowed us to reduce the USH2A candidate region to a very small interval flanked by D1S2646/D1S2629 and D1S2827. Furthermore, haplotype comparison between the different families suggests a founder effect for the USH2A mutation among the different Lebanese ethnic groups, while a genetic heterogeneity is noted for Usher syndrome type I. Received: 9 January 1998 / Accepted: 23 March 1998  相似文献   

7.
Localization of two genes for Usher syndrome type I to chromosome 11.   总被引:11,自引:0,他引:11  
The Usher syndromes (USH) are autosomal recessive diseases characterized by congenital sensorineural hearing loss and progressive pigmentary retinopathy. While relatively rare in the general population, collectively they account for approximately 6% of the congenitally deaf population. Usher syndrome type II (USH2) has been mapped to chromosome 1q (W. J. Kimberling, M. D. Weston, C. M?ller, et al., 1990, Genomics 7: 245-249; R. A. Lewis, B. Otterud, D. Stauffer, et al., 1990, Genomics 7: 250-256), and one form of Usher syndrome type I (USH1) has been mapped to chromosome 14q (J. Kaplan, S. Gerber, D. Bonneau, J. Rozet, M. Briord, J. Dufier, A. Munnich, and J. Frezal, 1990. Cytogenet. Cell Genet. 58: 1988). These loci have been excluded as regions of USH genes in our data set, which is composed of 8 French-Acadian USH1 families and 11 British USH1 families. Both of these sets of families show linkage to loci on chromosome 11. Linkage analysis demonstrates locus heterogeneity between these sets of families, with the French-Acadian families showing linkage to D11S419 (Z = 4.20, theta = 0) and the British families showing linkage to D11S527 (Z = 6.03, theta = 0). Genetic heterogeneity of the data set was confirmed using HOMOG and the M test (log likelihood ratio > 10(5)). These results confirm the presence of two distinct USH1 loci on chromosome 11.  相似文献   

8.
Usher syndrome (US) is an autosomal recessive disease characterized by congenital hearing impairment and retinitis pigmentosa. It is the most frequent cause of deaf-blindness in adults and accounts for 3 to 6% of deaf children. Here, we report the genetic mapping of a gene for US type I (USH1A), the most severe form of the disease, to the long arm of chromosome 14, by linkage to probe MLJ14 at the D14S13 locus in 10 families of Western France ancestry (Z = 4.13 at theta = 0). Among them, 8 families originated from a small area of the Poitou-Charentes region (Z = 3.78 at theta = 0), suggesting that a founder effect could be involved. However, since not all US type I families were found to be linked to this locus, the present study provides evidence for genetic heterogeneity of this condition (heterogeneity versus homogeneity test HOMOG, P < 0.05; heterogeneity versus no linkage, P < 0.01).  相似文献   

9.
Usher syndrome is an autosomal recessive disease associating congenital sensorineural deafness and retinitis pigmentosa. Two clinical forms have been recognized, namely a) congenital and severe (type I) and b) later and moderate (type II). A linkage of the D1S81 probe (THH 33) with the gene for type II has been recently demonstrated by Kimberling et al. 1990. Here, a panel of 29 individuals from 6 kindreds with Usher syndrome type I has been tested for possible allelism at the D1S81 locus. A negative lod-score was found with this probe and close linkage to this region could be excluded. These different results support the view that the clinical heterogeneity in Usher syndrome is accounted for by an obvious genetic heterogeneity.  相似文献   

10.
Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP-like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia.  相似文献   

11.
Usher syndrome type I is an autosomal recessive disease characterized by profound congenital hearing impairment and vestibular dysfunction followed by the onset of progressive pigmentary retinopathy in childhood or early adolescence. A locus (USH1C) for one form of this disease was previously assigned to the short arm of chromosome 11 through linkage studies in the Acadian population of southwestern Louisiana. Linkage analyses of a set of microsatellite markers in 27 Acadian families provide evidence that USH1C lies between D11S861 and D11S928. Three markers (D11S419, D11S921, and D11S899) that lie between the flanking markers show no recombination with USH1C, and all 54 chromosomes with the abnormal allele at the disease locus have identical alleles for D11S419 and D11S921. This haplotype was found on only 10 of 50 chromosomes with the normal allele at the disease locus, suggesting a strong founder effect. Of the 54 chromosomes with the abnormal allele, 12 had a divergent allele at D11S899. These results suggest that USH1C is in the 2-3-cM interval between D11S861 and D11S899.  相似文献   

12.
In the current study, 12 Spanish families affected by type-I Usher syndrome, that was previously linked to chromosome 11q, were screened for the presence of mutations in the N-terminal coding portion of the motor domain of the myosin VIIA gene by single-strand conformation polymorphism analysis of the first 14 exons. A mutation (Ala397Asp) segregating with the disease was identified, and several polymorphisms were also detected. It is presumed that the other USH1B mutations in these families could be located in the unscreened regions of the gene. Received: 10 November 1997 / Accepted: 15 March 1998  相似文献   

13.
We have previously reported significant linkage between markers on 11q13.5 and Usher syndrome type 1 (USH1B) in a large Samaritan kindred. USH1B is an autosomal recessive disease characterized by profound congenital sensorineural deafness, vestibular dysfunction and progressive visual loss. A unique haplotype found only in all USH1B carriers and affected individuals implied that the disease-causing mutation probably entered the community from a single founder. Screening for mutations in a gene called GARP, which was mapped to the same genetic interval as USH1B, revealed a base substitution in the coding region of the gene, in a homozygous state in all affected individuals. This base substitution, which results in an arginine to tryptophane change, is not found in control individuals and occurs at an amino acid residue that is conserved across species, including mouse, gorilla, chimpanzee and macaque. This study emphasizes the strength of using an isolated inbred population for efficient identification of the primary linkage and for narrowing the disease interval, but also demonstrates its limitations in distinguishing between mutations causing the disease and those representing unique and private polymorphisms. Am J Phys Anthropol 104:193–200, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Usher syndrome type 1b (USH1B) is an autosomal recessive disorder characterized by congenital profound hearing loss, vestibular abnormalities, and retinitis pigmentosa. The disorder has recently been shown to be caused by mutations in the myosin VIIa gene (MYO7A) located on 11q14. In the current study, a panel of 189 genetically independent Usher I cases were screened for the presence of mutations in the N-terminal coding portion of the motor domain of MYO7A by heteroduplex analysis of 14 exons. Twenty-three mutations were found segregating with the disease in 20 families. Of the 23 mutations, 13 were unique, and 2 of the 13 unique mutations (Arg212His and Arg212Cys) accounted for the greatest percentage of observed mutant alleles (8/23, 31%). Six of the 13 mutations caused premature stop codons, 6 caused changes in the amino acid sequence of the myosin VIIa protein, and 1 resulted in a splicing defect. Three patients were homozygotes or compound heterozygotes for mutant alleles; these three cases were Tyr333Stop/Tyr333Stop, Arg212His-Arg302His/Arg212His-Arg302His, and IVS13nt-8c-->g/Glu450Gln. All the other USH1B mutations observed were simple heterozygotes, and it is presumed that the mutation on the other allele is present in the unscreened regions of the gene. None of the mutations reported here were observed in 96 unrelated control samples, although several polymorphisms were detected. These results add three patients to single case reported previously where mutations have been found in both alleles and raises the total number of unique mutations in MYO7A to 16.  相似文献   

15.
Usher syndrome type II (USH2) is a genetically heterogeneous autosomal recessive disorder with at least three genetic subtypes (USH2A, USH2B, and USH2C) and is classified phenotypically as congenital hearing loss and progressive retinitis pigmentosa. The VLGR1 (MASS1) gene in the 5q14.3-q21.1 USH2C locus was considered a likely candidate on the basis of its protein motif structure and expressed-sequence-tag representation from both cochlear and retinal subtracted libraries. Denaturing high-performance liquid chromatography and direct sequencing of polymerase-chain-reaction products amplified from 10 genetically independent patients with USH2C and 156 other patients with USH2 identified four isoform-specific VLGR1 mutations (Q2301X, I2906FS, M2931FS, and T6244X) from three families with USH2C, as well as two sporadic cases. All patients with VLGR1 mutations are female, a significant deviation from random expectations. The ligand(s) for the VLGR1 protein is unknown, but on the basis of its potential extracellular and intracellular protein-protein interaction domains and its wide mRNA expression profile, it is probable that VLGR1 serves diverse cellular and signaling processes. VLGR1 mutations have been previously identified in both humans and mice and are associated with a reflex-seizure phenotype in both species. The identification of additional VLGR1 mutations to test whether a phenotype/genotype correlation exists, akin to that shown for other Usher syndrome disease genes, is warranted.  相似文献   

16.
A new neonatal syndrome characterized by intrauterine growth retardation, lactic acidosis, aminoaciduria, liver hemosiderosis, and early death was recently described. The pathogenesis of this disease is unknown. The mode of inheritance is autosomal recessive, and so far only 17 cases have been reported in 12 Finnish families. Here we report the assignment of the locus for this new disease to a restricted region on chromosome 2q33-37. We mapped the disease locus in a family material insufficient for traditional linkage analysis by using linkage disequilibrium, a possibility available in genetic isolates such as Finland. The primary screening of the genome was performed with samples from nine affected individuals in five families. In the next step, conventional linkage analysis was performed in eight families, with a total of 12 affected infants, and finally the locus assignment was proved by demonstrating linkage disequilibrium to the regional markers in 20 disease chromosomes. Linkage analysis restricted the disease locus to a 3-cM region between markers D2S164 and D2S2359, and linkage disequilibrium with the ancestral haplotype restricted the disease locus further to the immediate vicinity of marker D2S2250.  相似文献   

17.
Human chromosome 10q21-22 harbors USH1F in a region of conserved synteny to mouse chromosome 10. This region of mouse chromosome 10 contains Pcdh15, encoding a protocadherin gene that is mutated in ames waltzer and causes deafness and vestibular dysfunction. Here we report two mutations of protocadherin 15 (PCDH15) found in two families segregating Usher syndrome type 1F. A Northern blot probed with the PCDH15 cytoplasmic domain showed expression in the retina, consistent with its pathogenetic role in the retinitis pigmentosa associated with USH1F.  相似文献   

18.
Watanabe S  Umeki N  Ikebe R  Ikebe M 《Biochemistry》2008,47(36):9505-9513
Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa, and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D, and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3-fold but reduced the actin-activated ATPase activity to 50% of the wild type. While all of the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from actomyosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa.  相似文献   

19.
Usher syndrome type II is associated with hearing loss and retinitis pigmentosa but not with any vestibular problems. It is known to be genetically heterogeneous, and one locus (termed USH2A) has been linked to chromosome 1q41. In an effort to refine the localization of USH2A, the genetic map of the region between and adjacent to the marker loci previously recognized as flanking USH2A (D1S70 and PPOL) is updated. Analysis of marker data on 68 Usher II families places the USH2A gene into a 2.1-cM region between the markers D1S237 and D1S229. The gene for transforming growth factor β2 (TGFB2) and the gene for the homeodomain box (HLX1) are both eliminated as candidates for USH2A, by virtue of their localization outside these flanking markers. The earlier finding of genetic heterogeneity was confirmed in six new families, and the proportion of unlinked Usher II families is estimated at 12.5%. The placement of the USH2A gene into this region will aid in the physical mapping and isolation of the gene itself.  相似文献   

20.
Usher syndrome type I (USH1), the most severe form of this syndrome, is characterized by profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. At least seven USH1 loci, USH1A-G, have been mapped to the chromosome regions 14q32, 11q13.5, 11p15, 10q21-q22, 21q21, 10q21-q22, and 17q24-25, respectively. Mutations in five genes, including MYO7A, USH1C, CDH23, PCDH15 and SANS, have been shown to be the cause of Usher syndrome type 1B, type 1C, type 1D, type 1F and type 1G, respectively. In the present study, we carried out a systematic mutation screening of these genes in USH1 patients from USA and from UK. We identified a total of 27 different mutations; of these, 19 are novel, including nine missense, two nonsense, four deletions, one insertion and three splicing defects. Approximatelly 35–39% of the observed mutations involved the USH1B and USH1D genes, followed by 11% for USH1F and 7% for USH1C in non-Acadian alleles and 7% for USH1G. Two of the 12 MYO7A mutations, R666X and IVS40-1G>T accounted for 38% of the mutations at that locus. A 193delC mutation accounted for 26% of CDH23 (USH1D) mutations, confirming its high frequency. The most common PCDH15 (USH1F) mutation in this study, 5601-5603delAAC, accounts for 33% of mutant alleles. Interestingly, a novel SANS mutation, W38X, was observed only in the USA cohort. The present study suggests that mutations in MYO7A and CDH23 are the two major components of causes for USH1, while PCDH15, USH1C, and SANS are less frequent causes.X.-M. Ouyang and D. Yan contributed equally to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号