首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative rates of ornithine aminotransferase (OAT) synthesis in vivo were studied by pulse-labeling rats with [4,5-3H]leucine, isolating the mitochondrial enzyme protein by immunoprecipitation with a monospecific antibody, dissociating the immunoprecipitates on sodium dodecyl sulfate-acrylamide gels, and determining the radioactivity in OAT. After 4 days of treatment with triiodothyronine (T3), both the enzyme activity level and the relative synthetic rate of OAT in rat kidney were elevated over twofold. The level of hepatic OAT activity was unaffected by this treatment. Thyroidectomy caused a 50% drop in the basal level of OAT activity and synthesis in kidney but not in liver. Although the basal levels of activity and synthesis of both renal and hepatic OAT were unaffected by adrenalectomy, the glucagon induction of the enzyme in liver was enhanced by about one-third and the T3 induction in kidney was suppressed 50% by this operation. After 4 days of treatment with estrogen, both the enzyme activity level and the relative synthetic rate of OAT in male rat kidney were elevated nearly 10-fold. Hepatic OAT activity and synthesis were unaffected by this regimen. Thyroidectomy almost completely abolished the estrogen induction of OAT in kidney. OAT induction by estrogen could be restored by treating thyroidectomized rats with T3. Simultaneous administration of T3 plus estrogen to intact rats produced a multiple effect, resulting in a striking 20-fold induction of renal OAT. Although administration of either T3 or estrogen causes an increase in the synthesis of immunoprecipitable OAT protein in rat kidney, each of these hormones may induce OAT by a different mechanism.  相似文献   

2.
The activities of two enzymes mediating different pathways of ornithine catabolism were measured in liver and kidney of chronically uremic rats and their pair-fed controls. Two months following partial nephrectomy hepatic ornithine aminotransferase (OAT) activity tended to be lower in uremic rats and was correlated with urea clearance and with carbamoyl phosphate synthetase activity. Renal OAT activity in uremic rats was also correlated with urea clearance. When uremic rats were maintained for five months, OAT activity was significantly decreased in liver but not in kidney and the activity of ornithine decarboxylase (ODC), the enzyme regulating polyamine biosynthesis, was reduced in both liver and kidney. In cross-over experiments, evidence was obtained for a factor in uremic kidney cytosol which inhibited renal ODC activity.  相似文献   

3.
Regulation of ornithine aminotransferase in retinoblastomas   总被引:1,自引:0,他引:1  
  相似文献   

4.
The activities and regulatory patterns of arginase and ornithine aminotransferase (OAT) of the liver (a mitotic tissue) and kidney cortex (a post-mitotic tissue) of immature, adult, and senescent male rats were studied. The activities of the liver enzymes were highest in the immature rat and decreased gradually with age. However, in the kidney cortex, the activity of arginase was highest and decreased significantly thereafter while that of OAT shows no significant change throughout the life span of the rat. Further, the activity of kidney cortex arginase was approximately 1/20th of that of the liver enzyme. Adrenalectomy and hydrocortisone treatments altered the activity of arginase in both tissues and that of OAT in the liver only. However, the kidney cortex OAT was not responsive towards these treatments. Actinomycin D inhibited the hydrocortisone-mediated induction of arginase of both the liver and kidney cortex and that of the liver OAT.  相似文献   

5.
6.
The complete amino acid sequence of rat kidney ornithine aminotransferase [EC 2.6.1.13] is presented. The 404-residue sequence was determined by analysis of peptides generated by digestion of the S-carboxyamidomethylated protein with CNBr, Achromobacter protease I, arginylendopeptidase, or Staphylococcus aureus V8 protease. Mueckler and Pitot have reported the amino acid sequence of the rat liver enzyme (440 residues) as predicted from the nucleotide sequence of the cDNA [Mueckler, M.M. & Pitot, H.C. (1985) J. Biol. Chem. 260, 12993-12997]. The amino acid sequence of the rat kidney enzyme presented herein coincides with residue 36 (Gly) through 440 (Phe) of the predicted precursor protein, indicating that the liver and kidney enzymes are identical, and that the enzyme is processed at the amino-terminal region after translation.  相似文献   

7.
Summary Gyrate atrophy (GA), a degenerative disease of the human chorioretina, is associated with a deficiency of ornithine aminotransferase (OAT) activity, hyperornithinemia, and ornithinuria. We have characterized a cDNA clone for OAT (HLOAT) that was isolated from a cDNA library constructed from mRNA prepared from Hep G2, cells, a human hepatoma cell line. We have used HLOAT and a nearly full length OAT cDNA clone isolated from, a rat liver library (RLOAT) to examine in cultured fibroblasts from individuals with GA and control individuals, the expression of OAT mRNA and the gross structure of the OAT gene. Northern blot analyses of total cellular RNA indicated that 3 of 3 control cell lines and 5 of 6 GA cell lines are capable of expressing an OAT related mRNA of approximately 2100 bases, the size of OAT mRNA. To date, this is the only case of GA in which a complete lack of OAT mRNA has been observed. Southern blot analyses of DNA isolated from these cell lines indicated that the gross structure of the OAT gene is usually not detectably altered in individuals with GA. However, a unique pattern, of restriction fragments was observed upon digestion with Eco RI or Hind III of DNA from the GA cell line that does not express OAT mRNA. These unique Eco RI and Hind III fragments arise from the OAT structural gene and will serve as useful molecular markers that allow this particular defective OAT allele to be identified. When the cellular DNAs were digested with Hinf I and examined with a probe that corresponds to at least a portion of the active site of the enzyme, i. e., the pyridoxal phosphate binding site, identical patterns of fragments were detected in all samples. Therefore, it appears unlikely that the loss of OAT activity associated with these GA cases, 4 of which are pyridoxal phosphate responders, is the result of insertions or deletions in this region of the OAT gene. This study indicates that the lack of OAT enzyme activity associated with GA is the result of a variety of different molecular defects within the OAT gene. This project was initiated in the laboratory of H. C. P. and was supported by grants CA07175, CA22484, and 5 T32 CA09020 from the National Cancer Institute and Postdoctoral Fellowship PF-2414 from the American Cancer Society. The continuing work in the laboratory of J. D. S. was supported by grants CA36727 and HD24189 from the National, Institutes of Health, grants SIG-16, ACS-IN165A, and a Junior Faculty Research Award (JFRA-227) from the American Cancer Society, and by University of Nebraska Medical Center Seed Research Grant 88-10.  相似文献   

8.
9.
5-Fluoromethylornithine (5-FMOrn) is a specific inactivator of l-ornithine:2-oxoacid aminotransferase (OAT). However, a certain proportion of the OAT activity in mouse brain, liver and kidney is not inactivated by this compound. In the present work, the occurrence, distribution and subcellular localization of this 5-FMOrn-resistant OAT is reported. It was shown that the 5-FMOrn-resistant brain enzyme is kinetically different from the corresponding liver enzyme, and it also differs from the 5-FMOrn-sensitive OAT. The most conspicuous difference between the 5-FMOrn-resistant OAT of liver and brain is the sensitivity of the latter against excessive concentrations of its substrate 2-oxoglutarate.5-FMOrn and GABA are reversible inhibitors of the 5-FMOrn-resistant enzyme. Both compounds compete with Orn for the enzymes active site. A number of known inactivators of GABA-T which are at the same time inactivators of OAT, and canaline, a natural inhibitor of OAT, inactivate both the 5-FMOrn-sensitive and the 5-FMOrn-resistant enzyme. Gabaculine is the most potent inhibitor of the 5-FMOrn-resistant enzyme that is presently known. Our results are compatible with the suggestion that the 5-FMOrn-resistant OAT is an isoenzyme. From the fact that this form of OAT prevails in the brain, and its occurrence in the nerve ending fraction of brain homogenates supports the view that 5-FMOrn-resistant OAT may be involved in the intraneuronal generation of neurotransmitter glutamate and/or GABA from Orn as precursor. Further support in favour of this notion are previous findings which suggest feedback inhibition of OAT by GABA in GABAergic nerve endings.  相似文献   

10.
Ornithine aminotransferase was purified by conventional biochemical methods from rat kidney, rat liver, and human liver. Affinity-purified antibodies raised to the rat kidney enzyme were used to produce an immunoadsorbent enabling a one-step purification of ornithine aminotransferase to be made from crude human liver extracts. The harsh chemical conditions often required to desorb immunoadsorbents were avoided by isolating antibodies with low functional affinity and employing an electrophoretic desorption method which allowed the enzyme activity to be retained. The close structural similarity between human and rat ornithine aminotransferase was demonstrated by immunodiffusion reactions. It was therefore possible to purify the enzyme from human liver using immobilized antibodies raised against rat kidney ornithine aminotransferase. Furthermore, desorption was more readily achieved due to the lower affinity for the human enzyme.  相似文献   

11.
A cDNA probe (HOAT1) for ornithine aminotransferase (OAT) has recently been used to map (1) the structural gene for this enzyme to chromosome 10 and (2) several related DNA sequences to the X chromosome. We have defined six RFLPs for OAT, to explore its possible role in gyrate atrophy (GA) of the choroid and retina, an autosomal recessive genetic disorder associated with a deficiency of OAT activity. The RFLPs, which are detected by noncoding single-copy probes from the OAT gene and by subclones of the HOAT1 cDNA, all map on human chromosome 10, producing an overall level of heterozygosity for the OAT locus of 83%. Using the RFLPs, we have determined that the OAT locus segregates concordantly with GA in one available pedigree. Furthermore, the RFLPs display significant disequilibrium with GA, providing genetic evidence implicating a defect in the OAT structural gene as the cause of this disorder. The RFLPs for OAT are potentially applicable to prenatal diagnosis and carrier detection in families with a previous history of GA. They will also allow identification of specific haplotypes associated with GA chromosomes, as a guide for more detailed molecular-genetic investigations of the mutations underlying the disorder.  相似文献   

12.
13.
The cDNA of human mitochondrial aspartate aminotransferase (E.C.2.6.1.1.) was isolated from a human liver cDNA library using a rat mitochondrial aspartate aminotransferase cDNA as probe. The sequence of this cDNA gives a predicted aminoacid sequence for the human presequence and for the human mature protein exhibiting respectively 93% and 95% homology with rat sequences. A Northern blot of total RNA, isolated from various human tissues and hybridized with this cDNA, revealed a single 2.4 Kb RNA band. Mitochondrial aspartate aminotransferase RNA was clearly detected in human kidney, placenta, stomach and spleen as well as in both fetal and adult liver.  相似文献   

14.
1. The specific activities of ornithine aminotransferase (OAT) in the pigment epithelia, retinas, and livers from several classes of vertebrates were assayed. 2. The specific activities of OAT were much higher in the pigment epithelia from mammals and birds than in their respective retinas or livers. 3. Pigment epithelium from porcine eyes had the highest specific activity measured. The specific activity of OAT in the pigment epithelium from the pig was five times higher than the OAT activity in its retina and 13 times higher than the OAT activity in its liver.  相似文献   

15.
Gyrate atrophy of the choroid and retina is an autosomal recessive, blinding human disease caused by a deficiency of the mitochondrial matrix enzyme ornithine aminotransferase (OAT). Since human OAT cDNA hybridizes to DNA sequences on both human chromosomes 10 and X, a locus coding for OAT enzyme activity may be present on one or both of these human chromosomes. We have used a series of mouse-human somatic cell hybrids, in combination with starch gel electrophoresis and a histochemical stain for OAT enzyme activity, to assign the structural gene for OAT to human chromosome 10. Our results suggest that the human X chromosome does not contain a locus coding for OAT enzyme activity. In addition, we have used a panel of Chinese hamster-mouse hybrids to assign the murine Oat structural gene to mouse chromosome 7. Our findings, combined with recent molecular studies, indicate that human OAT probes specific for chromosome 10 will be useful for the diagnosis and genetic counseling of individuals at risk for gyrate atrophy.  相似文献   

16.
17.
5-Fluoromethylornithine (5FMOrn) is an enzyme-activated irreversible inhibitor or ornithine aminotransferase (L-ornithine:2-oxo-acid 5-aminotransferase, OAT). For purified rat liver OAT, Ki(app.) was found to be 30 microM. and tau 1/2 = 4 min. Of the four stereomers of 5FMOrn only one reacts with OAT. The formation of a chromophore with an absorption maximum at 458 nm after inactivation of OAT by 5FMOrn suggests the formation of an enamine intermediate, which is slowly hydrolysed to release an unsaturated ketone. L-Canaline [(S)-2-amino-4-amino-oxybutyric acid] is a well-known irreversible inhibitor of OAT. Not only the natural L-enantiomer but also the D-enantiomer reacts by oxime formation with pyridoxal 5'-phosphate in the active site of the enzyme, although considerably more slowly. This demonstrates that the stereochemistry at C-2 of ornithine is not absolutely stringent. In vitro, canaline reacted faster than 5FMOrn with OAT. In vivo, however, only incomplete OAT inhibition was observed with canaline. Whereas intraperitoneal administration of 10 mg of 5FMOrn/kg body wt. to mice was sufficient to inactivate OAT in brain and liver by 90% for 24 h, 500 mg of DL-canaline/kg body wt. only produced a transient inhibition of 65-70%. The accumulation of ornithine in these tissues was considerably slower and the maximum concentrations lower than were achieved with 5FMOrn. It appears that DL-canaline, in contrast with 5FMOrn, is not useful as a tool in studies of biological consequences of OAT inhibition.  相似文献   

18.
Effect of caffeine on ornithine metabolism in rat brain, liver and kidney   总被引:1,自引:0,他引:1  
Prolonged treatment with caffeine promotes in rats an increase of liver ornithine carbamyltransferase activity (14-day treatment). In contrast, arginase activity is already reduced in brain and kidney after 10 days, and in the liver much later (17 days). Ornithine transaminase activity was increased in both liver and kidney, while in the brain it was reduced (17 days). Ornithine decarboxylase activity showed only minor modifications in kidney, while it was unchanged in brain. Of the polyamines, only spermidine was significantly modified, being increased in brain, decreased in liver and kidney. Although these results do not explain the mechanism of the modification of brain arginine and ornithine concentration promoted by caffeine, they point to further marked effects, i.e. on OAT activity and on spermidine concentration, which could have a relevant metabolic role.  相似文献   

19.
Summary We have used a full length cDNA clone to determine the chromosomal location ofthegene encoding human ornithine aminotransferase (OAT), a mitochondrial matrix enzyme. Southern blot analysis of ScaI-digested DNA from 34 human-mouse somatic cell hybrids revealed 11 human fragments. Three fragments mapped to chromosome 10q23-10qter, confirming the previous provisional assignment of the functional gene to this autosome by analysis of OAT expression in somatic cell hybrids (O'Donnell et al. 1985). The remaining eight fragments were assigned to the X chromosome, and regionally assigned to Xp21-Xp11 by use of an X-chromosome mapping panel. These X chromosome sequences could represent pseudogenes, or related members of a multigene family. Two of the X chromosome fragments are alternate alleles of a restriction fragment length polymorphism (RFLP) making this OAT-related locus an excellent genetic marker. The RFLP may now be used to determine any possible relationship between this locus and several X-linked eye defects.  相似文献   

20.
We studied the human ornithine aminotransferase (OAT) gene, mRNA, and enzyme activity in fibroblasts from a family with gyrate atrophy (G.A.) of the choroid and retina, using a normal human OAT cDNA as a probe. The family consists of an affected patient, who is heterozygous for a partial deletion of the functional OAT gene and whose cells produce no mRNA, and of his father, mother, two sons, and a daughter. Southern blot analysis of the OAT gene showed the partial deletion in the patient and in his father and daughter and in one son. Northern blot analysis revealed no OAT mRNA in the patient and approximately 50% of the normal level of OAT mRNA in the father, mother, two sons, and daughter. Assay showed that the OAT activity in these individuals mirrored the OAT mRNA levels. The results indicate that an active allele of the OAT gene expresses 50% of the total normal OAT mRNA and activity and that both alleles of the gene are inactive in the patient in this pedigree, a situation resulting in a complete absence of the OAT mRNA, in accordance with the autosomal recessive mechanism of this disease; they also indicate a 50% decrease of OAT mRNA and enzyme activity in obligate heterozygous carriers carrying one defective allele and that these defects are stably inherited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号