首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
对采后番茄果实的电镜观察表明:当果实成熟衰老时,叶绿体数量减少,多数基粒结构丧失;成熟果实胞壁中胶层水解成中空的电子透明区,初生壁的纤丝也发生一定程度的水解,相邻细胞分离;外源 PG(多聚半乳糖醛酸酶)提取物处理绿熟期果实组织,也可引起胞壁结构和叶绿体发生与正常衰老相同的变化。Ca~(2+)、Mg~(2+)、Co~(2+)二价金属离子处理果实,可明显降低番茄红素含量和 PG 活性,延缓果实软化。外源乙烯处理果实,可促进番茄红素的形成,提高 PG活性,并能解除钙对 PG 活性的抑制。本文也对 PG 在乙烯和 Ca~(2+)调节果实成熟中的作用进行了讨论。  相似文献   

3.
Tomato mRNA was extracted from individual fruits at different stages of development and ripening, translated in a rabbit reticulocyte lysate and the protein products analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The results indicate that there are at least two classes of mRNA under separate developmental control. One group of approximately six mRNAs is present during fruit growth and then declines at the mature-green stage. Another group of between four and eight mRNAs increases substantially in amount at the onset of ripening, after the start of enhanced ethylene synthesis by the fruit, and continues to accumulate as ripening progresses. Studies of protein synthesis in vivo show that several new proteins are synthesised by ripening fruits including the fruit-softening enzyme polygalacturonase. One of the ripening-related mRNAs is shown to code for polygalacturonase, by immunoprecipitation with serum from rabbits immunised against the purified tomato enzyme. Polygalacturonase mRNA is not detectable in green fruit but accumulates during ripening. It is proposed that the ripening-related mRNAs are the products of a group of genes that code for enzymes important in the ripening process.Abbreviation SDS sodium dodecyl sulfate  相似文献   

4.
系统比较了转多聚半乳糖醛酸酶(PG)反义基因和对照番茄果实成熟过程中绿熟、转色、粉顶、粉红、全红5个时期的PG活性和与其相关的生理、生化组分的动态变化。实验表明,转基因果与对照果相比,PG活性始终处于较低水平,PG活性强烈被抑制是在全红期;果实的硬度、贮藏寿命指数都高于对照果;番茄红素合成积累进程被延缓;可溶性果胶含量、电解质外渗百分率均低于对照果。外源乙烯刺激引起对照果PG活性剧增,而转基因果表现钝化。讨论了PG活性与果实成熟、耐贮性及软化的关系,及对外源乙烯刺激的敏感性。首次明确提出PG活性在对照果中极大地表达,在转基因果中强烈被抑制是在全红期 ,而不是在整个成熟期;PG活性在果实软化中起直接和重要作用;PG活性的高低与番茄红素的合成与积累有关。  相似文献   

5.
以丰香和红丰草莓为试材,对果实发育成熟过程中细胞壁水解酶活性和细胞壁成份变化进行了研究.结果表明:半乳糖苷酶和α-甘露糖苷酶活性随草莓果实成熟而提高,葡萄糖苷酶活性不随草莓果实成熟而提高.随着果实发育成熟,纤维素酶活性、果胶酶活性不断提高.果实中未检测到内切多聚半乳糖醛酸酶活性,外切多聚半乳糖醛酸酶活性变化不随果实成熟软化而提高.随果实发育成熟,细胞壁中可溶性果胶和半纤维素增加,而离子结合果胶和共价结合果胶及纤维素减少.  相似文献   

6.
Fruit ripening is a developmental complex process which occurs in higher plants and involves a number of stages displayed from immature to mature fruits that depend on the plant species and the environmental conditions. Nowadays, the importance of fruit ripening comes mainly from the link between this physiological process in plants and the economic repercussions as a result of one of the human activities, the agricultural industry. In most cases, fruit ripening is accompanied by colour changes due to different pigment content and increases in sugar levels, among others. Major physiological modifications that affect colour, texture, flavour, and aroma are under the control of both external (light and temperature) and internal (developmental gene regulation and hormonal control) factors. Due to the huge amount of metabolic changes that take place during ripening in fruits from higher plants, the accomplishment of new throughput methods which can provide a global evaluation of this process would be desirable. Differential proteomics of immature and mature fruits would be a useful tool to gain information on the molecular changes which occur during ripening, but also the investigation of fruits at different ripening stages will provide a dynamic picture of the whole transformation of fruits. This subject is furthermore of great interest as many fruits are essential for human nutrition. Thus far different maturation profiles have been reported specific for each crop species. In this work, a thorough review of the proteomic database from fruit development and maturation of important crop species will be updated to understand the molecular physiology of fruits at ripening stages.  相似文献   

7.
PG与番茄果实成熟的关系   总被引:12,自引:0,他引:12  
系统比较了转多聚半乳糖醛酸酶(PG)反义基因和对照番茄果实成熟过程中绿熟、转色、粉顶、粉红、全红5个时期的PG活性和与其相关的生理、生化组分的动态变化.实验表明,转基因果与对照果相比,PG活性始终处于较低水平,PG活性强烈被抑制是在全红期;果实的硬度、贮藏寿命指数都高于对照果;番茄红素合成积累进程被延缓;可溶性果胶含量、电解质外渗百分率均低于对照果.外源乙烯刺激引起对照果PG活性剧增,而转基因果表现钝化.讨论了PG活性与果实成熟、耐贮性及软化的关系,及对外源乙烯刺激的敏感性.首次明确提出PG活性在对照果中极大地表达,在转基因果中强烈被抑制是在全红期,而不是在整个成熟期;PG活性在果实软化中起直接和重要作用;PG活性的高低与番茄红素的合成与积累有关.  相似文献   

8.

Background

One of the main factors that reduce fruit quality and lead to economically important losses is oversoftening. Textural changes during fruit ripening are mainly due to the dissolution of the middle lamella, the reduction of cell-to-cell adhesion and the weakening of parenchyma cell walls as a result of the action of cell wall modifying enzymes. Pectins, major components of fruit cell walls, are extensively modified during ripening. These changes include solubilization, depolymerization and the loss of neutral side chains. Recent evidence in strawberry and apple, fruits with a soft or crisp texture at ripening, suggests that pectin disassembly is a key factor in textural changes. In both these fruits, softening was reduced as result of antisense downregulation of polygalacturonase genes. Changes in pectic polymer size, composition and structure have traditionally been studied by conventional techniques, most of them relying on bulk analysis of a population of polysaccharides, and studies focusing on modifications at the nanostructural level are scarce. Atomic force microscopy (AFM) allows the study of individual polymers at high magnification and with minimal sample preparation; however, AFM has rarely been employed to analyse pectin disassembly during fruit ripening.

Scope

In this review, the main features of the pectin disassembly process during fruit ripening are first discussed, and then the nanostructural characterization of fruit pectins by AFM and its relationship with texture and postharvest fruit shelf life is reviewed. In general, fruit pectins are visualized under AFM as linear chains, a few of which show long branches, and aggregates. Number- and weight-average values obtained from these images are in good agreement with chromatographic analyses. Most AFM studies indicate reductions in the length of individual pectin chains and the frequency of aggregates as the fruits ripen. Pectins extracted with sodium carbonate, supposedly located within the primary cell wall, are the most affected.  相似文献   

9.
It has been reported that PG is a key enzyme related to the tomato fruit ripening. In this study tomato fruits were harvested at the mature-green stage and stored at room temperature. The cell ultrastructure of pericarp tissue was observed at different ripening stages, and the effects of treatments with ethylene and calcium on PG activity and fruit ripening were examined. The object of this study is to elucidate the role of PG in regulation of tomato fruit ripening by ethylene and calcium. PG activity, was undetectable at mature-green stage, but it rose rapidly as fruif ripening. The rise in PG activity was coincided with the dechnmg of fruit firmness during ripening of tomato fruits. The observation of cell ultrastructure showed that the most of grana in chloroplast were lost and the mitochondrial cristae decreased as fruit ripening. Striking changes of cell wall structure was most noted, beginning with dissolution of the middle lamella and eventual disruption of primary cell wall. A similar pattern of changes of cell wall and chloroplast have been observed in pericarp tissue treated with PG extract. In fruits treated with calcium and other divalent metal ions atmature-green stage, the lycopene content and PG activity decreased dramatically. Ethylene application enhanced the formation of lycopene and PG activity. The inhibition of Ca2+ on PG ac ivity was removed by ethylene. Based on the above results, it was demonstrated that PG played a major role in ripening of tomato fruits, and suggested that the regulation of fruit ripening by ethylene and Ca2+ was all mediated by PG. PG induced the hydrolysis of cell wall and released the other hydrolytic enzymes, then effected the ripening processes follow up.  相似文献   

10.
Gas chromatography coupled with time-of-flight mass spectrometry and principal component analysis were used to obtain the metabolite profiles of guava (Psidium guajava) fruits. Results with two types of data-processing software, ChromaTOF and AMDIS, were compared to explain the differences between the samples. There were some differences in score and loading plot patterns of PCA as well as in the composition of the metabolites. However, little difference was observed in the type of metabolites detected and identified using either type of software. Both the flesh and peel of premature and mature white guava fruits were compared for the analysis of the metabolite profiles. Malic acid, aspartic acid, and glucose were the major metabolites distinguishing the different parts of guava fruits in the PCA loading plot. In addition, the metabolic profiles of the fruits revealed significant changes in some metabolites during ripening. The major components contributing to the separation were serine, citric acid, fructose, sucrose, and some unknowns. In particular, sucrose, fructose, serine and citric acid were related to the ripening of guava fruits. Fructose and sucrose were increased whereas citric acid was decreased during guava fruit ripening.  相似文献   

11.
Analysis of the oxidative processes taking place during fruit ripening in a salad tomato variety (Lycopersicon esculentum Mill. cv. Ailsa Craig) revealed changes in oxidative and antioxidative parameters. Hydrogen peroxide content, lipid peroxidation and protein oxidation were measured as indices of oxidative processes and all were found to increase at the breaker stage. The levels of the aqueous-phase antioxidants, glutathione and ascorbate, increased during the ripening process and these increases were associated with significant changes in their redox status, becoming more reduced as ripening progressed. Changes in the activities of superoxide dismutase, catalase and the enzymes involved in the ascorbate-glutathione cycle during ripening indicated that the antioxidative system plays a fundamental role in the ripening of tomato fruits.  相似文献   

12.
Activities of promoters from the capsanthin/capsorubin synthase and fibrillin genes, which are molecular markers for ripening in the non-climacteric pepper fruits, have been studied in transgenic tomato plants that produce fruits of the climacteric type (characterized by an increase in respiration and ethylene production). The promoters of both genes were strongly upregulated during tomato fruit ripening in a manner similar to the induction of these genes in pepper fruits. Induction occurred at the mature green stage preceding ripening (a stage when ethylene production and respiration are known to rise in tomato fruits). Ethylene positively influenced the expression of both genes in tomato. Other plant growth regulators, namely abscisic acid, auxin and polyamines, did not alter gene expression. In contrast, water loss strongly induced both promoters. This dehydration-mediated gene induction was inhibited by mitochondrial respiration inhibitors (mainly of the alternative oxidase). A slight positive effect with light, apparently not linked to normal photosynthesis but rather to photooxidative stress, was also observed. Taken together, the data indicate that activation of oxidase systems, leading to changes in the cellular redox balance, mediates the induction of both genes in tomato. Various cellular compartments are likely to be contributors to this process, which leads to the developmental regulation of nuclear genes encoding plastid-located proteins.  相似文献   

13.
研究了芒果后熟软化与贮藏淀粉变化之间的关系。结果表明,采后芒果淀粉的水解和消失,是使中果皮细胞壁失去支撑致使果实软化的重要原因之一。杀菌剂普克唑对芒果后熟软化和贮藏淀粉形态学的变化稍有延迟作用;2,4-D处理可以明显推迟后熟软化,减慢果实硬度的降低和淀粉的水解,而乙烯利处理则能催熟芒果,显著加速硬度丧失和淀粉的水解及其含量的减少。  相似文献   

14.
15.
Pear fruits (Pyrus communis L. var. Bartlett) were treated with solutions containing aminoethoxyvinylglycine (AVG) using a modified vacuum infiltration method that introduced 4.3 milliliters solution per 100 grams tissue. At concentrations of 1 millimolar, AVG strongly inhibited ethylene production and delayed for 5 days the respiratory climacteric and accompanying ripening changes in skin color and flesh firmness. AVG was less effective in inhibiting the ripening of more mature fruits. Fruit infiltrated with 5 millimolar AVG had not begun to ripen 12 days after initiation of ripening in the controls. When treated with ethylene the inhibited fruit exhibited a climacteric rise in respiration, softened, and became yellow. Treatment of the AVG infiltrated fruits with ethyelne for 24 hours resulted in no recovery in endogenous ethylene production, but in a stimulation of protein synthesis measured as a 200% increase in leucine incorporation by excised tissue and a 74% increase in the percentage of ribosomes present as polysomes.  相似文献   

16.
Han SE  Seo YS  Kim D  Sung SK  Kim WT 《Plant cell reports》2007,26(8):1321-1331
Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is β-cyanoalanine synthase (β-CAS). As little is known about the molecular function of β-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple β-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as β-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, β-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.  相似文献   

17.
18.
钙对不同成熟期番茄果实的PG活性及其合成的影响   总被引:11,自引:0,他引:11  
本文研究了钙处理不同成熟期番茄果实对果壁组织中钙含量与转化、多聚半乳糖醛酸酶(PG)活性与 PG 合成的影响。结果表明,钙处理绿熟期的番茄果实可使总钙和可溶性钙含量明显增加,并较多转化为结合钙;后期处理,进入和转化的钙都减少。同样,钙处理愈早,对果实 PG 活性的抑制愈强,绿熟期处理可完全抑制 PG 活性。凝胶电泳结合钌红染色,证明绿熟期果实无 PG,PG 是在果实成熟过程中新合成的。钙处理愈早,对 PG 合成的抑制愈强,绿熟期钙处理可完全抑制 PG 合成。  相似文献   

19.
Oxidative stress is involved in many biological systems, among which are fruit ripening and senescence. Free radicals play an important role in senescence and ageing processes. Plants have evolved antioxidative strategies in which superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) are the most efficient antioxidant enzymes, influencing patterns of fruit ripening. Variations in total SOD and CAT activities were determined at regular intervals during ripening and senescence in on‐tree and cold‐stored apple fruits of the cultivars Fuji and Golden Delicious. In all fruits, internal ethylene concentration was also measured. The results suggest that the onset of ripening, signalled by ethylene burst, is closely related to SOD and CAT activities. In on‐tree fruits the climacteric peak in ethylene was associated with the peaks of SOD and CAT activity in both cultivars. Quite different results were obtained in cold‐stored fruits: Ethylene concentration increased in both cultivars during the storage. CAT activity doubled in both cultivars. SOD activity decreased in Golden Delicious and peaked in Fuji.  相似文献   

20.
It has been reported that PG is a key enzyme related to the tomato fruit ripening and that the application of calcium can dramatically decrease the PG activity and delay the ripening of fruits. In this paper the effects of calcium treament at various ripening stages on the transformation of absorbed calcium, PG activity and PG synthesis in tomato fruits were studicd. According to the analysis of calcium by atomic absorption spectroscopy, it was shown that the soluble and total calcium contents in pericarp of fruits treated with calcium at mature-green stage were increased significantly, and that more soluble calcium was transformed into bound calcium. Both the absorption and transformation of calcium decreased in fruits treated with calcium at later stage of ripening. The inhibition of calcium on PG activity was most effective by treatment at mature-green stage, but less effective at later stage of ripening. One reason for the decrease of calcium inhibition was probably due to the decline of calcium absorption as fruit ripening. The polyacrylamide gel electrophoresis of PG showed that PG with a molecular weight of 46.7 kD was absent in mature-green fruits, and PG synthesis occurred only at the later stage of ripening. It seems that the earlier the treatment was done the more effective of the calcium inhibition of PG synthesis. Based on the above results, it was concluded that the PG plays a major role in ripening and senescence of tomato fruits, and both PG synthesis and its activity were inhibited by calcium. In order to delay the ripening and senescence of tomato fruits, the treatment with calcium should be done at mature-green stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号