首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male New Zealand White rabbits were divided into three groups: (I) control, (II) high-fat-diet (HFD) fed, and (III) HFD fed+selenium supplemented. After 3 mo of treatment, there was a significant increase in serum cholesterol and triglycerides in the HFD-fed group as compared to the control. However in the selenium (Se)-supplemented group, the levels of serum cholesterol and triglycerides were significantly less as compared to group II. HFD feeding resulted in decreased serum Se levels, but supplementation of dietary Se along with HFD, as in group III, showed an apparent increase in its levels. The Se-dependent glutathione peroxidase (GSH-Px) activity in the liver and the aorta increased significantly in HFD-fed animals and also showed an additional significant increase on Se supplementation. Both serum T3 and T4 levels showed a significant decrease on HFD feeding. However, supplementation of Se led to a significant increase in the levels of these parameters viz-à-viz HFD-fed animals. HFD feeding significantly decreased the activity of type I iodothyronine 5′-deiodinase (5′-DI) in the liver from group II rats. On supplementation of Se along with HFD, the activity increased in the liver. However, there was no significant change in its activity in the aorta. The 5′-DI activity in the thyroid showed an opposite trend in comparison with peripheral tissues (i.e., liver). The important finding of this study is that in the hyperlipidemic state, deiodinase in the thyroid behaves in a different manner as compared to its activity in extrathyroidal tissues.  相似文献   

2.
The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPARβ/δ signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPARβ/δ and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.  相似文献   

3.
In the central nervous system (CNS), the inhibitory transmitter GABA interacts with three subtypes of GABA receptors, type A, type B, and type C. Historically, GABA receptors have been classified as either the inotropic GABAA receptors or the metabotropic GABAB receptors. Over the past 10 yr, studies have shown that a third class, called the GABAC receptor, also exists. GABAC receptors are found primarily in the vertebrate retina and to some extent in other parts of the CNS. Although GABAA and GABAC receptors both gate chloride channels, they are pharmacologically, molecularly, and functionally distinct. The ρ subunit of the GABAC receptor, which has about 35% amino acid homology to GABAA receptor subunits, was cloned from the retina and, when expressed inXenopus oocytes, has properties similar to retinal GABAC receptors. There are probably distinct roles for GABAC receptors in the retina, because they are found on only a subset of neurons, whereas GABAA receptors are ubiquitous. This article reviews recent electrophysiological and molecular studies that have characterized the unique properties of GABAC receptors and describes the roles that these receptors may play in visual information processing in the retina.  相似文献   

4.
The expression of retinoic acid-induced gene 1 (RIG1), a class II tumor suppressor gene, is induced in cells treated with retinoids. RIG1 has been shown to express ubiquitously and the increased expression of this gene appears to suppress cell proliferation. Recent studies also demonstrated that this gene may play an important role in cell differentiation and the progression of cancer. In spite of the remarkable regulatory role of this protein, the molecular mechanism of RIG1 expression induced by retinoids remains to be clarified. The present study was designed to study the molecular mechanism underlying the all-trans retinoic acid (atRA)-mediated induction of RIG1 gene expression. Polymerase chain reaction was used to generate a total of 10 luciferase constructs that contain various fragments of the RIG1 5'-genomic region. These constructs were then transfected into human gastric cancer SC-M1 and breast cancer T47D cells for transactivation analysis. atRA exhibited a significant induction in luciferase activity only through the -4910/-5509 fragment of the 5'-genomic region of RIG1 gene relative to the translation initiation site. Further analysis of this promoter fragment indicated that the primary atRA response region is located in between -5048 and -5403 of the RIG1 gene. Within this region, a direct repeat sequence with five nucleotide spacing, 5'-TGACCTctattTGCCCT-3' (DR5, -5243/-5259), and an inverted repeat sequence with six nucleotide spacing, 5'-AGGCCAtggtaaTGGCCT-3' (IR6, -5323/-5340), were identified. Deletion and mutation of the DR5, but not the IR6 element, abolished the atRA-mediated activity. Electrophoretic mobility shift assays with nuclear extract from atRA-treated cells indicated the binding of retinoic acid receptor (RAR) and retinoid X receptor (RXR) heterodimers specifically to this response element. In addition to the functional DR5, the region contains many other potential sequence elements that are required to maximize the atRA-mediated induction. Taken together, we have identified and characterized the functional atRA response element that is responsible for the atRA-mediated induction of RIG1 gene.  相似文献   

5.
《Journal of lipid research》2017,58(5):1021-1029
Consumption of the tomato carotenoid, lycopene, has been associated with favorable health benefits. Some of lycopene's biological activity may be due to metabolites resulting from cleavage of the lycopene molecule. Because of their structural similarity to the retinoic acid receptor (RAR) antagonist, β-apo-13-carotenone, the “first half” putative oxidative cleavage products of the symmetrical lycopene have been synthesized. All transformations proceed in moderate to good yield and some with high stereochemical integrity allowing ready access to these otherwise difficult to obtain terpenoids. In particular, the methods described allow ready access to the trans isomers of citral (geranial) and pseudoionone, important flavor and fragrance compounds that are not readily available isomerically pure and are building blocks for many of the longer apolycopenoids. In addition, all of the apo-11, apo-13, and apo-15 lycopenals/lycopenones/lycopenoic acids have been prepared. These compounds have been evaluated for their effect on RAR-induced genes in cultured hepatoma cells and, much like β-apo-13-carotenone, the comparable apo-13-lycopenone and the apo-15-lycopenal behave as RAR antagonists. Furthermore, molecular modeling studies demonstrate that the apo-13-lycopenone efficiently docked into the ligand binding site of RARα. Finally, isothermal titration calorimetry studies reveal that apo-13-lycopenone acts as an antagonist of RAR by inhibiting coactivator recruitment to the receptor.  相似文献   

6.
Aquaporin-5 (AQP5) is a water-selective channel protein that is expressed in lacrimal glands, salivary glands, and distal lung. Several studies using AQP5 knockout mice have revealed that AQP5 plays an important role in maintaining water homeostasis in the lung. We report here that all-trans retinoic acid (atRA) increases plasma membrane water permeability, AQP5 mRNA and protein expression, and AQP5 promoter activity in MLE-12 cells. The promoter activation induced by atRA was diminished by mutation at the Sp1/Sp3 binding element (SBE), suggesting that the SBE mediates the effects of atRA. In addition, atRA increased the binding of Sp1 to the SBE without changing the levels of Sp1 in the nucleus. Taken together, our data indicate that atRA increases AQP5 expression through transactivation of Sp1, leading to an increase in plasma membrane water permeability.  相似文献   

7.
Summary. The present study aimed to examine the presence and define the role of 4F2hc, a glycoprotein associated with the LAT2 amino acid transporter, in L-DOPA handling by LLC-PK1 cells. For this purpose we have measured the activity of the apical and basolateral inward and outward transport of [14C] L-DOPA in cell monolayers and examined the influence of 4F2hc antisense oligonucleotides on [14C] L-DOPA handling. The basal-to-apical transepithelial flux of [14C] L-DOPA progressively increased with incubation time and was similar to the apical-to-basal transepithelial flux. The spontaneous and the L-DOPA-stimulated apical fractional outflow of [14C] L-DOPA were identical to that through the basal cell side. The L-DOPA-induced fractional outflow of [14C] L-DOPA through the apical or basal cell side was accompanied by marked decreases in intracellular levels of [14C] L-DOPA. In cells treated with an antisense oligonucleotide complementary to 4F2hc mRNA for 72 h, [14C] L-DOPA inward transport and 4F2hc expression were markedly reduced. Treatment with the 4F2hc antisense oligonucleotide markedly decreased the spontaneous fractional outflow of [14C] L-DOPA through the apical or the basal cell side. It is likely that the Na+-independent and pH-sensitive uptake of L-DOPA include the hetero amino acid exchanger LAT2/4F2hc, which facilitates the trans-stimulation of L-DOPA and its outward transfer at both the apical and basal cell sides.  相似文献   

8.
1. Interaction in the recognition of endothelin-1 (ET-1), a typical bivalent ET receptor-ligand, between ETA and ETB receptors was investigated in the rat anterior pituitary gland, using our quantitative receptor autoradiographic method with tissue sections preserving the cell-membrane structure and ET receptor-related compounds.2. In saturation binding studies with increasing concentrations (0.77–200 pM) of 125I-ET-1 (nonselective bivalent radioligand), 125I-ET-1 binding to the rat anterior pituitary gland was saturable and single with a K D of 71 pM and a B max of 120 fmol mg–1. When 1.0 M BQ-123 (ETA antagonist) was added to the incubation buffer, binding parameters were 8.3 pM of K D and 8.0 fmol mg–1 of B max, whereas 10 nM sarafotoxin S6c (ETB agonist) exerted little change in these binding parameters (K D, 72 pM; B max, 110 fmol mg–1).3. Competition binding studies with a fixed amount (3.8 pM) of 125I-ET-1 revealed that when 1.0 M BQ-123 was present in the incubation buffer, ETB receptor-related compounds such as sarafotoxin S6c, ET-3, IRL1620 (ETB agonist), and BQ-788 (ETB antagonist) competitively inhibited 125I-ET-1 binding with K is of 140, 18, 350 pM, and 14 nM, respectively, however, these compounds were not significant competitors for 125I-ET-1 binding in the case of absence of BQ-123.4. In cold-ligand saturation studies with a fixed amount (390 pM) of 125I-IRL 1620 (ETB radioligand), IRL1620 bound to a single population of the ETB receptor, and no change was observed in binding characteristics in the presence of 1.0 M BQ-123. 125I-IRL1620 binding was competitively inhibited by ET-1 and ET-3 in the absence of BQ-123, with K is of 20 and 29 pM, respectively, the affinities being much the same as those of 29 nM, in the presence of 1.0 M BQ-123.5. Two nonbivalent ETA antagonists, BQ-123 and PD151242, were highly sensitive and full competitors for 125I-ET-1 binding (5.0 pM), in the presence of 10 nM sarafotoxin S6c.6. Taken together with the present finding that mRNAs encoding the rat ETA and the ETB receptors are expressed in the anterior pituitary gland, we tentatively conclude that although there are ETA and ETB receptors with a functional binding capability for ET receptor-ligands, the ETB receptor does not independently recognize ET-1 without the aid of the ETA receptor. If this thesis is tenable, then ET-1 can bridge between the two receptors to form an ETA–ETB receptor heterodimer.  相似文献   

9.
In rat luteal cells labeled with (3H]oleic acid, PGF-stimulated phospholipase D (PLD) activation was investigated. The PLD activity was detected by measuring the accumulation of [3H]phosphatidylethanol (PtdEt) in the presence of ethanol. PGF stimulated PtdEt accumulation at concentrations of more than 100 nM in the presence of ethanol. However, PtdEt accumulation did not change in the absence of ethanol. PGF (1 μM) increased PtdEt accumulation after 1 min, and the accumulation reached a plateau by 2–3 min. These results indicate that PGF activates PLD in rat luteal cells. U-73122, a phospholipase C (PLC) inhibitor, and staurosporine, a protein kinase C (PKC) inhibitor, did not inhibit PGF-stimulated [3H]PtdEt accumulation. These results suggest that PGF-induced PLD activation is different from PLC-PKC systems. We reported previously that PGF stimulated the release of arachidonic acid. The effects of indomethacin, nordihydroguaiaretic acid (NDGA), and 5,8,11,14-eicosatetraynoic acid (ETYA), inhibitors of arachidonic acid metabolism, on PGF-stimulated PtdEt accumulation were examined. Pretreatment with indomethacin enhanced PGF-induced PtdEt accumulation. In contrast, pretreatment with NDGA and ETYA inhibited PGF-induced PtdEt accumulation. It is suggested that PGF-stimulated PLD activation is mediated via lipoxygenase products.  相似文献   

10.
11.
Epidermal growth factor (EGF) induces changes in cell morphology, actin cytoskeleton, and adhesion processes in cultured infantile pituitary cells. The extracellular matrix, through integrin engagement, collaborates with growth factors in cell signaling. We have examined the participation of collagen I/III and collagen plus fibronectin in the EGF response of infantile pituitary cells with respect to their cell morphology and actin cytoskeleton. As a comparison, we have used poly-lysine as a substrate. Infantile cells elicit the EGF response when they are associated with extracellular matrix proteins, but no response can be obtained with poly-lysine as the substrate. Cells acquire a flattened shape and organize their actin filaments and vinculin as in focal adhesions. Because the EGF receptor (EGFR) is linked to the actin cytoskeleton in other cells structuring a microdomain in cell signaling, we have investigated this association and substrate adhesion participation in infantile pituitary cells. The proportion of EGFR associated with the actin cytoskeleton is approximately 31%; no difference has been observed between the substrates used. Cells in suspension show actin-associated EGFR, suggesting an association independent of cell adhesion. However, no colocalization of EGFRs with actin fibers has been observed, suggesting an indirect association. Compared with β1-integrin, which is linked to actin fibers through structural proteins, EGFR binds more strongly with the actin cytoskeleton. This study thus shows cell adhesion dependence on the EGF effect in the actin cytoskeleton arrangement; this is probably favored by the actin fiber/EGFR association that facilitates the cell signaling pathways for actin cytoskeleton organization in infantile pituitary cells.This work was supported by the National Council of Science and Technology of México (grant 44619, and a fellowship to C.T.).  相似文献   

12.
13.
Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.  相似文献   

14.
N-(p-amylcinnamoyl)anthranilic acid (ACA), a phospholipase A2 (PLA2) inhibitor, is structurally-related to non-steroidal anti-inflammatory drugs (NSAIDs) of the fenamate group and may also modulate various ion channels. We used the whole-cell, patch-clamp technique at room temperature to investigate the effects of ACA on the Ca2+-activated chloride current (ICl(Ca)) and other chloride currents in isolated pig cardiac ventricular myocytes. ACA reversibly inhibited ICl(Ca) in a concentration-dependent manner (IC50 = 4.2 μM, nHill = 1.1), without affecting the L-type Ca2+ current. Unlike ACA, the non-selective PLA2 inhibitor bromophenacyl bromide (BPB; 50 μM) had no effect on ICl(Ca). In addition, the analgesic NSAID structurally-related to ACA, diclofenac (50 μM) also had no effect on ICl(Ca), whereas the current in the same cells could be suppressed by chloride channel blockers flufenamic acid (FFA; 100 μM) or 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS;100 μM). Besides ICl(Ca), ACA (50 μM) also suppressed the cAMP-activated chloride current, but to a lesser extent. It is proposed that the inhibitory effects of ACA on ICl(Ca) are PLA2-independent and that the drug may serve as a useful tool in understanding the nature and function of cardiac anion channels.  相似文献   

15.
Suzuki T  Obara Y  Moriya T  Nakata H  Nakahata N 《FEBS letters》2011,585(24):3978-3984
A2A adenosine receptor (A2AR), P2Y1 receptor (P2Y1R) and P2Y12 receptor (P2Y12R) are predominantly expressed on human platelets. The individual role of each of these receptors in platelet aggregation has been actively reported. Previously, hetero-oligomerization between these three receptors has been shown to occur. Here, we show that Ca2+ signaling evoked by the P2Y1R agonist, 2-methylthioladenosine 5’ diphosphate (2MeSADP) was significantly inhibited by the A2AR antagonist (ZM241385 and SCH442416) and the P2Y12R antagonist (ARC69931MX) using HEK293T cells expressing the three receptors. It was confirmed that inhibition of P2Y1R signaling by A2AR and P2Y12R antagonists was indeed mediated through A2AR and P2Y12R using 1321N1 human astrocytoma cells which do not express P2Y receptors. We expect that intermolecular signal transduction and specific conformational changes occur among components of hetero-oligomers formed by these three receptors.  相似文献   

16.
The glutamine/amino acid transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted glutamine/amino acid transporter catalysed a first-order antiport reaction stimulated by external, not internal, Na+. Optimal activity was found at pH 7.0. The sulfhydryl reagents HgCl2, mersalyl and p-hydroxymercuribenzoate and the amino acids alanine, serine, threonine, cysteine, asparagine, methionine and valine strongly inhibited the transport, whereas the amino acid analogue methylaminoisobutyrate had no effect. Glutamine, alanine, serine, asparagine, threonine were efficiently translocated from outside to inside and from inside to outside the proteoliposomes as well. Cysteine and valine were translocated preferentially from outside to inside. The Km for glutamine on the external and internal side of the transporter was 0.47 and 11 mM, respectively; the values were not influenced by the type of the counter substrate. The transporter is functionally asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. By a bisubstrate kinetic analysis of the glutamine antiport, a random simultaneous mechanism was found. The glutamine antiport was strongly stimulated by internal nucleoside triphosphates and, to a lower extent, by pyrophoshate. The reconstituted glutamine/amino acid transporter functionally corresponds to the ASCT2 protein.  相似文献   

17.
Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion–ascorbate combinations was investigated in aerated and incubated emulsions at 37 °C and pH 7. LA peroxidation induced by copper(II)–ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin > catechin ≥ quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33 V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)–Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure–activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions.  相似文献   

18.
Identification of all residues involved in the recognition and binding of cholinergic ligands (e.g. agonists, competitive antagonists, and noncompetitive agonists) is a primary objective to understand which structural components are related to the physiological function of the nicotinic acetylcholine receptor (AChR). The picture for the localization of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are located mainly on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are identical, the observed high and low affinity for different ligands on the receptor is conditioned by the interaction of the alpha subunit with other non-alpha subunits. This molecular interaction takes place at the interface formed by the different subunits. For example, the high-affinity acetylcholine (ACh) binding site of the muscle-type AChR is located on the alphadelta subunit interface, whereas the low-affinity ACh binding site is located on the alphagamma subunit interface. Regarding homomeric AChRs (e.g. alpha7, alpha8, and alpha9), up to five binding sites may be located on the alphaalpha subunit interfaces. From the point of view of subunit arrangement, the gamma subunit is in between both alpha subunits and the delta subunit follows the alpha aligned in a clockwise manner from the gamma. Although some competitive antagonists such as lophotoxin and alpha-bungarotoxin bind to the same high- and low-affinity sites as ACh, other cholinergic drugs may bind with opposite specificity. For instance, the location of the high- and the low-affinity binding site for curare-related drugs as well as for agonists such as the alkaloid nicotine and the potent analgesic epibatidine (only when the AChR is in the desensitized state) is determined by the alphagamma and the alphadelta subunit interface, respectively. The case of alpha-conotoxins (alpha-CoTxs) is unique since each alpha-CoTx from different species is recognized by a specific AChR type. In addition, the specificity of alpha-CoTxs for each subunit interface is species-dependent.In general terms we may state that both alpha subunits carry the principal component for the agonist/competitive antagonist binding sites, whereas the non-alpha subunits bear the complementary component. Concerning homomeric AChRs, both the principal and the complementary component exist on the alpha subunit. The principal component on the muscle-type AChR involves three loops-forming binding domains (loops A-C). Loop A (from mouse sequence) is mainly formed by residue Y(93), loop B is molded by amino acids W(149), Y(152), and probably G(153), while loop C is shaped by residues Y(190), C(192), C(193), and Y(198). The complementary component corresponding to each non-alpha subunit probably contributes with at least four loops. More specifically, the loops at the gamma subunit are: loop D which is formed by residue K(34), loop E that is designed by W(55) and E(57), loop F which is built by a stretch of amino acids comprising L(109), S(111), C(115), I(116), and Y(117), and finally loop G that is shaped by F(172) and by the negatively-charged amino acids D(174) and E(183). The complementary component on the delta subunit, which corresponds to the high-affinity ACh binding site, is formed by homologous loops. Regarding alpha-neurotoxins, several snake and alpha-CoTxs bear specific residues that are energetically coupled with their corresponding pairs on the AChR binding site. The principal component for snake alpha-neurotoxins is located on the residue sequence alpha1W(184)-D(200), which includes loop C. In addition, amino acid sequence 55-74 from the alpha1 subunit (which includes loop E), and residues gammaL(119) (close to loop F) and gammaE(176) (close to loop G) at the low-affinity binding site, or deltaL(121) (close to the homologous region of loop G) at the high-affinity binding site, are i  相似文献   

19.
Glutamate is the main neurotransmitter released at synapses in the central nervous system of vertebrates. Its excitatory role is mediated through activation of specific glutamatergic ionotropic receptors, among which the N-methyl-d-aspartate (NMDA) receptor subtype has attracted considerable attention in recent years. Substantial progress has been made in elucidating the roles these receptors play under physiological and pathological conditions and in our understanding of the functional, structural, and pharmacological properties of NMDA receptors. Many pharmacological compounds have been identified that affect the activity of NMDA receptors, including neurosteroids. This review summarizes our knowledge about molecular mechanisms underlying the neurosteroid action at NMDA receptors as well as about the action of neurosteroids in animal models of human diseases.  相似文献   

20.
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP2 by phospholipase C (PLC) into the second messengers IP3 and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP2, has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP2 by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号