首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FUS-proteinopathies, a group of heterogeneous disorders including ALS-FUS and FTLD-FUS, are characterized by the formation of inclusion bodies containing the nuclear protein FUS in the affected patients. However, the underlying molecular and cellular defects remain unclear. Here we provide evidence for mitochondrial localization of FUS and its induction of mitochondrial damage. Remarkably, FTLD-FUS brain samples show increased FUS expression and mitochondrial defects. Biochemical and genetic data demonstrate that FUS interacts with a mitochondrial chaperonin, HSP60, and that FUS translocation to mitochondria is, at least in part, mediated by HSP60. Down-regulating HSP60 reduces mitochondrially localized FUS and partially rescues mitochondrial defects and neurodegenerative phenotypes caused by FUS expression in transgenic flies. This is the first report of direct mitochondrial targeting by a nuclear protein associated with neurodegeneration, suggesting that mitochondrial impairment may represent a critical event in different forms of FUS-proteinopathies and a common pathological feature for both ALS-FUS and FTLD-FUS. Our study offers a potential explanation for the highly heterogeneous nature and complex genetic presentation of different forms of FUS-proteinopathies. Our data also suggest that mitochondrial damage may be a target in future development of diagnostic and therapeutic tools for FUS-proteinopathies, a group of devastating neurodegenerative diseases.  相似文献   

2.
This paper covers genetic and biochemical aspects of mitochondrial bioenergetics dysfunction in hereditary neurological disorders associated with complex I defects. Three types of hereditary complex I dysfunction are dealt with: (i) homozygous mutations in the nuclear genes NDUFS1 and NDUFS4 of complex I, associated with mitochondrial encephalopathy; (ii) a recessive hereditary epileptic neurological disorder associated with enhanced proteolytic degradation of complex I; (iii) homoplasmic mutations in the ND5 and ND6 mitochondrial genes of the complex, cohexistent with mutation in the nuclear PINK1 gene in familial Parkinsonism. The genetic and biochemical data examined highlight different mechanisms by which mitochondrial bioenergetics is altered in these hereditary defects of complex I. This knowledge, besides clarifying molecular aspects of the pathogenesis of hereditary diseases, can also provide hints for understanding the involvement of complex I in sporadic neurological disorders and aging, as well as for developing therapeutical strategies.  相似文献   

3.
In animal cell, mitochondria are the main sites of the synthesis of ATP required for cell functioning and survival. On the other hand, mitochondria play a key role in initiating cell programmed death (apoptosis). In addition, defects in the mitochondrial genome and in the nuclear genome encoding mitochondrial proteins may result in malfunctioning of these organelles and, as result, in diseases of the whole organism. This article contains basic information on the functioning of oxidative phosphorylation and on mitochondrial production of reactive oxygen species. It also describes initiation of apoptosis at the mitochondrial level. Finally, it briefly presents some most common genetic defects responsible for "mitochondrial diseases".  相似文献   

4.
Warburg proposed that cancer originates from irreversible injury to mitochondrial oxidative phosphorylation (mtOXPHOS), which leads to an increase rate of aerobic glycolysis in most cancers. However, despite several decades of research related to Warburg effect, very little is known about the underlying genetic cause(s) of mtOXPHOS impairment in cancers. Proteins that participate in mtOXPHOS are encoded by both mitochondrial DNA (mtDNA) as well as nuclear DNA. This review describes mutations in mtDNA and reduced mtDNA copy number, which contribute to OXPHOS defects in cancer cells. Maternally inherited mtDNA renders susceptibility to cancer, and mutation in the nuclear encoded genes causes defects in mtOXPHOS system. Mitochondria damage checkpoint (mitocheckpoint) induces epigenomic changes in the nucleus, which can reverse injury to OXPHOS. However, irreversible injury to OXPHOS can lead to persistent mitochondrial dysfunction inducing genetic instability in the nuclear genome. Together, we propose that "mitocheckpoint" led epigenomic and genomic changes must play a key role in reversible and irreversible injury to OXPHOS described by Warburg. These epigenetic and genetic changes underlie the Warburg phenotype, which contributes to the development of cancer.  相似文献   

5.
Petruzzella V  Papa S 《Gene》2002,286(1):149-154
Among the mitochondrial disorders, complex I deficiencies are encountered frequently. Although some complex I deficiencies have been associated with mitochondrial DNA mutations, in the majority of the complex I-deficient patients mutations of nuclear genes are expected. This review attempts to summarize genetic defects affecting nuclear encoded subunits of complex I reported to date focusing on those found in the NDUFS4 gene. NDUFS4 product is 18 kDa protein which appears to have a dual role in complex I, at least: cAMP-dependent phosphorylation activates the complex; non-sense mutation of NDUFS4 prevents normal assembly of a functional complex in the inner mitochondrial membrane.  相似文献   

6.
ATP synthase is a key enzyme of mitochondrial energy conversion. In mammals, it produces most of cellular ATP. Alteration of ATP synthase biogenesis may cause two types of isolated defects: qualitative when the enzyme is structurally modified and does not function properly, and quantitative when it is present in insufficient amounts. In both cases the cellular energy provision is impaired, and diminished use of mitochondrial DeltamuH+ promotes ROS production by the mitochondrial respiratory chain. The primary genetic defects have so far been localized in mtDNA ATP6 gene and nuclear ATP12 gene, however, involvement of other nuclear genes is highly probable.  相似文献   

7.
8.
The respiratory defects associated with mutations in human mitochondrial tRNA genes can be mimicked in yeast, which is the only organism easily amenable to mitochondrial transformation. This approach has shown that overexpression of several nuclear genes coding for factors involved in mitochondrial protein synthesis can alleviate the respiratory defects both in yeast and in human cells.  相似文献   

9.
p66Shc, the growth factor adaptor protein, can have a substantial impact on mitochondrial metabolism through regulation of cellular response to oxidative stress. We investigated relationships between the extent of p66Shc phosphorylation at Ser36, mitochondrial dysfunctions and an antioxidant defense reactions in fibroblasts derived from five patients with various mitochondrial disorders (two with mitochondrial DNA mutations and three with methylglutaconic aciduria and genetic defects localized, most probably, in nuclear genes). We found that in all these fibroblasts, the extent of p66Shc phosphorylation at Ser36 was significantly increased. This correlated with a substantially decreased level of mitochondrial superoxide dismutase (SOD2) in these cells. This suggest that SOD2 is under control of the Ser36 phosphorylation status of p66Shc protein. As a consequence, an intracellular oxidative stress and accumulation of damages caused by oxygen free radicals are observed in the cells.  相似文献   

10.
Mitochondrial DNA mutations and human disease   总被引:1,自引:0,他引:1  
Helen A.L. Tuppen 《BBA》2010,1797(2):113-109
Mitochondrial disorders are a group of clinically heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation (OXPHOS) defects. Since the identification of the first human pathological mitochondrial DNA (mtDNA) mutations in 1988, significant efforts have been spent in cataloguing the vast array of causative genetic defects of these disorders. Currently, more than 250 pathogenic mtDNA mutations have been identified. An ever-increasing number of nuclear DNA mutations are also being reported as the majority of proteins involved in mitochondrial metabolism and maintenance are nuclear-encoded. Understanding the phenotypic diversity and elucidating the molecular mechanisms at the basis of these diseases has however proved challenging. Progress has been hampered by the peculiar features of mitochondrial genetics, an inability to manipulate the mitochondrial genome, and difficulties in obtaining suitable models of disease. In this review, we will first outline the unique features of mitochondrial genetics before detailing the diseases and their genetic causes, focusing specifically on primary mtDNA genetic defects. The functional consequences of mtDNA mutations that have been characterised to date will also be discussed, along with current and potential future diagnostic and therapeutic advances.  相似文献   

11.
Mitochondrial respiratory chain deficiencies represent one of the major causes of metabolic disorders that are related to genetic defects in mitochondrial or nuclear DNA. The mitochondrial protein synthesis allows the synthesis of the 13 respiratory chain subunits encoded by mtDNA. Altogether, about 100 different proteins are involved in the translation of the 13 proteins encoded by the mitochondrial genome emphasizing the considerable investment required to maintain mitochondrial genetic system. Mitochondrial protein synthesis deficiency can be caused by mutations in any component of the translation apparatus including tRNA, rRNA and proteins. Mutations in mitochondrial rRNA and tRNAs have been first identified in various forms of mitochondrial disorders. Moreover abnormal translation due to mutation in nuclear genes encoding tRNA-modifying enzymes, ribosomal proteins, aminoacyl-tRNA synthetases, elongation and termination factors and translational activators have been successively described. These deficiencies are characterized by a huge clinical and genetic heterogeneity hampering to establish genotype-phenotype correlations and an easy diagnosis. One can hypothesize that a new technique for gene identification, such as exome sequencing will rapidly allow to expand the list of genes involved in abnormal mitochondrial protein synthesis.  相似文献   

12.
An immunocytochemical approach to detection of mitochondrial disorders.   总被引:1,自引:0,他引:1  
Mitochondrial disorders can lead to a confusing array of symptoms, which frequently makes a diagnosis difficult. Traditional approaches to such diagnoses are based on enzyme activity assays, with further characterization provided by genetic analysis. However, these methods require relatively large sample sizes, are time-consuming, labor-intensive, and show variability between laboratories. Here, we report an immunocytochemical test that makes use of monoclonal antibodies to subunits from each of the oxidative phosphorylation complexes and pyruvate dehydrogenase to aid in the detection of mitochondrial disorders. It can be completed and data analyzed in less than 4 hr. We have used this test to study fibroblast cultures from patients with mitochondrial disorders arising from both mitochondrial DNA and nuclear DNA defects. We have also examined cases of Leigh syndrome arising from different genetic causes. We show that patients can be categorized on the basis of which complexes are affected and whether or not the defect being studied shows a mosaic distribution, an indicator of whether the causal mutation(s) is/are in the mitochondrial or nuclear genome. Immunocytochemical analysis as described here should be considered as an initial screen for mitochondrial disorders by which to direct (and limit) the subsequent enzymatic and genetic tests required to make an unambiguous diagnosis.  相似文献   

13.
We review the current status of the role and function of the mitochondrial DNA (mtDNA) in the etiology of autism spectrum disorders (ASD) and the interaction of nuclear and mitochondrial genes. High lactate levels reported in about one in five children with ASD may indicate involvement of the mitochondria in energy metabolism and brain development. Mitochondrial disturbances include depletion, decreased quantity or mutations of mtDNA producing defects in biochemical reactions within the mitochondria. A subset of individuals with ASD manifests copy number variation or small DNA deletions/duplications, but fewer than 20 percent are diagnosed with a single gene condition such as fragile X syndrome. The remaining individuals with ASD have chromosomal abnormalities (e.g., 15q11-q13 duplications), other genetic or multigenic causes or epigenetic defects. Next generation DNA sequencing techniques will enable better characterization of genetic and molecular anomalies in ASD, including defects in the mitochondrial genome particularly in younger children.  相似文献   

14.
Mitochondrial diseases are a diverse family of genetic disorders caused by mutations affecting mitochondrial proteins encoded in either the nuclear or the mitochondrial genome. By impairing mitochondrial oxidative phosphorylation, they compromise cellular energy production and the downstream consequences in humans are a bewilderingly complex array of signs and symptoms that can affect any of the major organ systems in unpredictable combinations. This complexity and unpredictability has limited our understanding of the cytopathological consequences of mitochondrial dysfunction. By contrast, in Dictyostelium the mitochondrial disease phenotypes are consistent, measurable "readouts" of dysregulated intracellular signalling pathways. When the underlying genetic defects would produce coordinate, generalized deficiencies in multiple mitochondrial respiratory complexes, the disease phenotypes are mediated by chronic activation of an energy-sensing protein kinase, AMP-activated protein kinase (AMPK). This chronic AMPK hyperactivity maintains mitochondrial mass and cellular ATP concentrations at normal levels, but chronically impairs growth, cell cycle progression, multicellular development, photosensory and thermosensory signal transduction. It also causes the cells to support greater proliferation of the intracellular bacterial pathogen, Legionella pneumophila. Notably however, phagocytic and macropinocytic nutrient uptake are impervious both to AMPK signalling and to these types of mitochondrial dysfunction. Surprisingly, a Complex I-specific deficiency (midA knockout) not only causes the foregoing AMPK-mediated defects, but also produces a dramatic deficit in endocytic nutrient uptake accompanied by an additional secondary defect in growth. More restricted and specific phenotypic outcomes are produced by knocking out genes for nuclear-encoded mitochondrial proteins that are not required for respiration. The Dictyostelium model for mitochondrial disease has thus revealed consistent patterns of sublethal dysregulation of intracellular signalling pathways that are produced by different types of underlying mitochondrial dysfunction.  相似文献   

15.
Defects in Complex I of the mitochondrial respiratory chain have been identified in 38 patients. The clinical and laboratory features are reviewed and the results of recently devised strategies aimed at characterizing the primary molecular and genetic abnormalities are presented. Although not exhaustive, these studies have provided a molecular basis for the contention that defects in Complex I may have their origin in nuclear or in mitochondrial genes.  相似文献   

16.
线粒体疾病是一种累及不同的组织和器官的复杂异质性疾病,由核基因或线粒体基因的遗传缺陷导致,同时也受环境因素的影响。近十年来,有关线粒体疾病的诊断及发生机制的研究进展迅速,而疾病的治疗方法却研究较少。着重介绍线粒体疾病的相关治疗方法和干预策略。  相似文献   

17.
The role of mitochondria in the life of the nematode,Caenorhabditis elegans   总被引:2,自引:0,他引:2  
Mitochondria are essential organelles involved in energy metabolism via oxidative phosphorylation. They play a vital role in diverse biological processes such as aging and apoptosis. In humans, defects in the mitochondrial respiratory chain (MRC) are responsible for or associated with a bewildering variety of diseases. The nematode Caenorhabditis elegans is a simple animal and a powerful genetic and developmental model system. In this review, we discuss how the nematode model system has contributed to our understanding of mitochondrial dynamics, of the genetics and inheritance of the mitochondrial genome, and of the consequences of nuclear and mitochondrial DNA (mtDNA) mutations. Mitochondrial respiration is vital to energy metabolism but also to other aspects of multicellular life such as aging and development. We anticipate that further significant contributions to our understanding of mitochondrial function in animal biology are forthcoming with the C. elegans model system.  相似文献   

18.
Wong LJ 《Mitochondrion》2007,7(1-2):45-52
Although mitochondrial disorders are increasingly being recognized, confirming a specific diagnosis remains a great challenge due to the genetic and clinical heterogeneity of the disease. The heteroplasmic nature of most pathogenic mitochondrial DNA mutations and the uncertainties of the clinical significance of novel mutations pose additional complications in making a diagnosis. Suspicion of mitochondrial disease among patients with multiple, seemingly unrelated neuromuscular and multi-system disorders should ideally be confirmed by the finding of deleterious mutations in genes involving mitochondrial biogenesis and functions. The genetics are complex, as the primary mutation can be either in the nuclear or the mitochondrial DNA (mtDNA). MtDNA mutations are often maternally inherited, but can also be sporadic or secondary to mutations in nuclear-encoded mitochondrial-targeted genes. Several well-defined clinical syndromes associated with specific mutations have been described, yet the genotype-phenotype correlation is often unclear and most patients do not fit within any defined syndrome and even within a family the expressivity of the disease can be extremely variable. This article describes examples representing diagnostic challenges of mitochondrial diseases that include the limitations of the mutation detection method, the occurrence of mitochondrial disease in families with another known neuromuscular disorder, atypical clinical presentation, the lack of correlation between the degree of mutant heteroplasmy and the severity of the disease, variable penetrance, and nuclear gene defects causing mtDNA depletion.  相似文献   

19.
Genetic defects of cytochrome c oxidase assembly   总被引:1,自引:0,他引:1  
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, is one of the key functional and regulatory sites of the mammalian energy metabolism. Owing to the importance of the enzyme, pathogenetic mutations affecting COX frequently result in severe, often fatal metabolic disorders. No satisfactory therapy is currently available so that the treatment remains largely symptomatic and does not improve the course of the disease. While only few genetic defects of COX are caused by mutations in mitochondrial genome, during the last five years a large number of pathogenetic mutations in nuclear genes have been discovered. All these mutations are located in genes encoding COX-specific assembly proteins including SURF1, SCO1, SCO2, COX10, and COX15. Despite the identification of increasing number of mutations, their precise etiopathogenetic mechanisms, which are necessary for the development of future therapeutic protocols, still remain to be elucidated. This review summarizes recent developments, including our efforts in elucidation of the molecular basis of human mitochondrial diseases due to specific defects of COX with special focus on SURF1 assembly protein.  相似文献   

20.
In metazoan organisms, energy production is the only example of a process that is under dual genetic control: nuclear and mitochondrial. We used a genomic approach to examine how energy genes of both the nuclear and mitochondrial genomes are coordinated, and discovered a novel genetic regulatory circuit in Drosophila melanogaster that is surprisingly simple and parsimonious. This circuit is based on a single DNA regulatory element and can explain both intra- and inter-genomic coordinated expression of genes involved in energy production, including the full complement of mitochondrial and nuclear oxidative phosphorylation genes, and the genes involved in the Krebs cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号